# MANNING DIVERSIFIED FOREST PRODUCTS LTD.

# **Timber Supply Analysis**

2007 – 2017 Forest Management Plan for FMA 0200041

May 31, 2007

Prepared by: The Forestry Corp.

### 2007 – 2017 FMP FOR FMA 0200041

**Forest Landscape Metrics** forms one of 10 sections of the 2007 – 2017 Forest Management Plan for Manning Diversified Forest Products Ltd.'s Forest Management Agreement (FMA) 0200041. The Forest Management Plan (FMP) includes the following sections:

- 1. **Introduction and Plan Development** Introduces the companies operating on the FMA and describes the FMP development process, including the public consultation process. Includes the FMP Standards Checklist.
- 2. FMA Area Describes the physical environment of the FMA Area.
- 3. FMA Resources Describes the natural resources within the FMA Area.
- 4. Values, Objectives, Indicators and Targets (VOITs) Details the values, objectives, indicators and targets that were instrumental in selecting the Preferred Forest Management Strategy and in developing forest management strategies for the FMP.
- Forest Landscape Metrics Presents specific information regarding forest vegetation composition and natural disturbance within the FMA Area and/or northwestern Alberta to address VOIT requirements.
- 6. **Landbase Netdown** Provides a detailed description of the landbase netdown process, in preparation for the Timber Supply Analysis.
- 7. Yield Curves Documents the volume sampling and yield curve development process.
- 8. **Timber Supply Analysis** Describes how the Preferred Forest Management Strategy, which was selected to meet Values and Objectives, was incorporated into the Timber Supply Analysis and provides an Annual Allowable Cut for both the coniferous and deciduous landbases.
- 9. **Implementation** Describes the forest management strategies and operations that will be used to implement the FMP and help ensure that indicators and targets are met.
- 10. **Monitoring and Research** Describes monitoring commitments required to ensure indicators and targets are tracked and describes Manning Diversified's approach to supporting research.

## **Executive Summary**

Manning Diversified Forest Products (MDFP) Ltd.'s Forest Management Agreement (FMA) Area includes two Forest Management Units (FMUs), P6 and P9, which are currently referred to as FMU P16 (FMA 0200041). For the 2007-2017 FMP, an updated timber supply analysis was conducted to determine a PFMS.

Using the spatial harvest model called Patchworks, the Core Planning Team selected a PFMS which resulted in the following AAC recommendation for FMU P16 for the 2007-2017 FMP. The table below lists the harvest level from the PFMS for FMU P16 for the 2007-2017 FMP, as well as the current approved AAC. The effective date for this harvest level is May 1, 2007.

#### **Recommended P16 AAC.**

|                           | Coniferous Harvest Volume |           |         | Deciduo  | ous Harvest Vo | lume    |
|---------------------------|---------------------------|-----------|---------|----------|----------------|---------|
| (m                        |                           | (m³/yr)   | m³/yr)  |          | (m³/yr)        |         |
| Volume Source             | Primary                   | Secondary | Total   | Primary  | Secondary      | Total   |
|                           | Evenflow                  | 20yr avg. |         | Evenflow | 20yr avg.      |         |
| PFMS (Scenario P16_P9003) | 301,817                   | 12,736    | 314,553 | 73,619   | 179,298        | 252,917 |
| Current Approved AAC      | 196,897                   | 14,404    | 211,301 | 129,849  | 42,692         | 172,541 |

### **Table of Contents**

| 1.  | INTE  | RODUCTION                                    | 1   |
|-----|-------|----------------------------------------------|-----|
| 2.  | LAN   | DBASE                                        | 3   |
| 3.  |       | D CURVES                                     |     |
|     |       |                                              |     |
| 4.  | MOL   | DELING TOOLS                                 |     |
| 4.1 |       | WOODSTOCK                                    |     |
|     | !.1.1 | Linear Programming                           |     |
| 4.2 |       | PATCHWORKS                                   |     |
| 4   | 2.2.1 | Simulated Annealing                          | 23  |
| 5.  | ASSU  | JMPTIONS AND INPUTS                          | .25 |
| 5.1 |       | OVERVIEW                                     | 25  |
| 5.2 |       | MODELING OBJECTIVES                          |     |
| 5   | 5.2.1 | Deciduous Overstory With Conifer Understory. |     |
| 5   | 5.2.2 | Caribou Habitat                              |     |
| 5   | .2.3  | Landbase Losses                              | 29  |
| 5   | .2.4  | Natural Disturbance                          | 29  |
| 5   | .2.5  | Mountain Pine Beetle                         |     |
| 5   | .2.6  | FireSmart                                    | 32  |
| 5   | .2.7  | Seral Stages                                 | 34  |
| 5   | .2.8  | Old Interior Forest                          |     |
| 5   | .2.9  | Green-up                                     | 34  |
| 5.3 |       | HARVEST AND PLANTING ACTIONS                 | 35  |
| 5   | .3.1  | Clearcut                                     | 35  |
| 5   | .3.2  | Understory Protection                        | 35  |
| 5   | .3.3  | Tree Improvement Planting                    | 36  |
| 5.4 |       | STRATA TRANSITIONS                           |     |
| 5.5 |       | ACCESS CONTROL                               | 37  |
| 6.  | PFM   | S                                            | .45 |
| 6.1 |       | HARVEST VOLUME                               | 50  |
|     | 5.1.1 | Conifer Primary                              |     |
|     |       | Deciduous Primary                            |     |
|     | 5.1.3 | Deciduous volume from D and DUA strata       |     |
| 6.2 |       | GROWING STOCK.                               |     |
| 6.3 |       | HARVEST TYPE                                 | -   |
|     | 5.3.1 | DUA strata                                   |     |
|     | 5.3.2 | Understory Protection                        |     |
| 6.4 |       | AGE CLASS                                    |     |
| 6.5 |       | SERAL STAGE                                  |     |
| 6.6 |       | WHITE SPRUCE TPR F                           |     |
| 6.7 | ,     | CONIFER FLOW FROM FMU P9                     | 58  |



| 6.8 | 8 PSP                                   | 59 |
|-----|-----------------------------------------|----|
| 6.9 |                                         |    |
| 6.1 |                                         | 60 |
| 6.1 | 11 TREE IMPROVEMENT PLANTING            |    |
| 6.1 | 12 CONIFER TREES PER CUBIC METRE (TPM)  |    |
| 6.1 | 13 MOUNTAIN PINE BEETLE                 | 64 |
| 6.1 |                                         |    |
| 6.1 | 15 ALTERNATIVE PATCH MANAGEMENT PATCHES |    |
| 6.1 | 16 DISTURBANCE PATCHES                  |    |
| 6.1 | 17 OLD INTERIOR FOREST PATCHES          | 70 |
| 6.1 | 18 FIRESMART PATCHES                    | 71 |
| 6.1 | 19 FIRESMART ANALYSIS                   | 73 |
| 6.2 | 20 WATERSHED ANALYSIS                   | 73 |
| 7.  | AAC RECOMMENDATIONS                     | 77 |
| 7.1 | 1 RECOMMENDED AAC                       | 77 |
| 7.2 | 2 RECOMMENDED ALLOCATION                | 77 |
| 7.3 | 3 CHANGES FROM CURRENT APPROVED AAC     | 78 |
| 8.  | ISSUE RESOLUTION                        | 81 |
| 8.1 | 1 DUA HARVEST LEVELS                    |    |
| 8.2 | 2 CARIBOU HABITAT CONTROLS              | 83 |
| 8.3 | 3 MOUNTAIN PINE BEETLE                  |    |
| ^   |                                         |    |
| 9.  | REFERENCES                              |    |

### List of Appendices

| Appendix I   | Model Round Changes             |
|--------------|---------------------------------|
| Appendix II  | Additional Patchworks Scenarios |
| Appendix III | Watershed Analysis Report       |

### List of Tables

| Table 2-1. | Landbase deletion hierarchy.                      | 4  |
|------------|---------------------------------------------------|----|
| Table 2-2. | Active landbase yield strata.                     | 6  |
| Table 3-1. | Minimum utilization standards by species type     | 9  |
| Table 5-1. | Clearcut treatments based on understory condition | 26 |
| Table 5-2. | Pine stand rank calculation                       | 30 |
| Table 5-3. | FBP Code assignments by Strata.                   | 33 |
| Table 5-4. | Year zero (baseline) FBP codes                    | 33 |
| Table 5-5. | Year zero patch sizes of 'C' FBP code types.      | 34 |
| Table 5-6. | Seral Stage age categories.                       | 34 |
| Table 5-7. | Clearcut harvest ages                             | 35 |
| Table 5-8. | Understory protection harvest ages                | 36 |
| Table 5-9. | Strata transitions due to harvest activities.     | 37 |
|            |                                                   |    |

Timber Supply Analysis

| Table 5-10. Access Control used in PFMS.                                    |    |
|-----------------------------------------------------------------------------|----|
| Table 6-1. Comparison of SHS strata harvested with strata profile           |    |
| Table 6-2. SHS strata harvested by compartment and age class in years 1-10  |    |
| Table 6-3. SHS strata harvested by compartment and age class in years 11-20 |    |
| Table 6-4. Watershed Water Yield Predictions for Scenario P16_P7001         | 74 |
| Table 7-1. Recommended P16 AAC                                              | 77 |
| Table 7-2. Historic P16 AAC Allocation.                                     |    |

| 1 abic 7-2. | Thistoric T To AAC Allocation                     | 10 |
|-------------|---------------------------------------------------|----|
| Table 7-3.  | Recommended P16 AAC Allocation.                   | 78 |
|             | Comparison of Phase III landbase to AVI landbase. |    |
| Table 8-1.  | Comparison of PFMS scenario to P16_P9010.         | 82 |
| Table 8-2.  | Comparison of PFMS scenario to P16_P9020.         | 83 |
| Table 8-3.  | Comparison of PFMS scenario to P16_P9030.         | 86 |

### **List of Figures**

| Figure 2-1. Passive landbase by deletion category (seismic is not shown)                              | 5     |
|-------------------------------------------------------------------------------------------------------|-------|
| Figure 2-2. Active landbase by Yield Strata.                                                          | 7     |
| Figure 3-1. Natural stand yield curves.                                                               | 10    |
| Figure 3-2. Pre-91 Managed stand yield curves                                                         | 13    |
| Figure 3-3. Post-91 Managed stand yield curves.                                                       | 16    |
| Figure 3-4. Understory protection yield curve.                                                        | 18    |
| Figure 3-5. Tree improvement yield curves.                                                            | 19    |
| Figure 5-1. Caribou Zone and APMA.                                                                    | 28    |
| Figure 5-2. P16 pine stand rankings                                                                   |       |
| Figure 5-3. Access Control in years 1-5.                                                              |       |
| Figure 5-4. Access Control in years 6-10.                                                             | 42    |
| Figure 5-5. Access Control in years 11-15.                                                            | 43    |
| Figure 5-6. Access Control in years 16-20.                                                            | 44    |
| Figure 6-1. Twenty year SHS by company                                                                | 48    |
| Figure 6-2. Ten year SHS by strata                                                                    |       |
| Figure 6-3. Volume Harvested                                                                          |       |
| Figure 6-4. Conifer primary harvest volume.                                                           | 51    |
| Figure 6-5. Deciduous primary harvest volume                                                          |       |
| Figure 6-6. Deciduous harvest volume from D and DUA strata                                            |       |
| Figure 6-7. Coniferous landbase merchantable growing stock                                            |       |
| Figure 6-8. Deciduous landbase merchantable growing stock                                             |       |
| Figure 6-9. Deciduous Priority clearcut of DUA strata (ha/year).                                      |       |
| Figure 6-10. Conifer Priority clearcut of DUA strata (ha/year)                                        | 54    |
| Figure 6-11. Deciduous Priority clearcut of DUA strata, understory height between 12 and 15 m         |       |
| (ha/year).                                                                                            |       |
| Figure 6-12. Deciduous Priority clearcut of DUA strata, understory height greater than 15 m (ha/year) | ). 55 |
| Figure 6-13. Understory Protection harvest area (ha/year)                                             | 56    |
| Figure 6-14. Active landbase age class structure.                                                     | 56    |
| Figure 6-15. Active landbase seral stages                                                             | 57    |
| Figure 6-16. Area harvested of fair white spruce (ha/year).                                           | 58    |
| Figure 6-17. MDFP area harvested in P9                                                                | 58    |
| Figure 6-18. Area harvested within MDFP's PSP plots.                                                  |       |
| Figure 6-19. Road maintenance costs (\$/year)                                                         |       |
| Figure 6-20. Operating units.                                                                         | 61    |



| Figure 6-21.  | Area of operating units open in each period                                           | 62 |
|---------------|---------------------------------------------------------------------------------------|----|
| Figure 6-22.  | Tree improvement planting area in Breeding Region J (Pine).                           | 63 |
|               | Tree improvement planting area in Breeding Region G2 (Spruce)                         |    |
|               | Conifer trees per cubic metre.                                                        |    |
| Figure 6-25.  | P6 Rank 1 area harvested.                                                             | 65 |
| Figure 6-26.  | P6 Rank 2 area harvested.                                                             | 65 |
|               | P9 Rank 1 area harvested.                                                             |    |
|               | P9 Rank 2 area harvested.                                                             |    |
| Figure 6-29.  | Caribou 30/20 rule in P6 combined Caribou Zone and APM Area.                          | 67 |
|               | Caribou 30/20 rule in P9 combined Caribou Zone and APM Area.                          |    |
| Figure 6-31.  | Percent of Alternative Patch Management in the combined Caribou Zone and APMA         | 68 |
| Figure 6-32.  | Percent of Disturbance patches in size class 60-200 ha.                               | 69 |
| Figure 6-33.  | Disturbance patches in all size classes.                                              | 69 |
| Figure 6-34.  | Percent of Old Interior forest patch size greater than 120 ha.                        | 70 |
| Figure 6-35.  | Old Interior forest patch size distribution                                           | 71 |
| Figure 6-36.  | Percent of FireSmart patches greater than 1000 ha                                     | 72 |
| Figure 6-37.  | FireSmart patch size classes.                                                         | 72 |
| Figure 6-38.  | Watersheds chosen for analysis with 20 year SHS.                                      | 75 |
|               | Watersheds and Percent Water Yield Increase                                           |    |
| Figure 8-1. ( | Comparison of Deciduous harvest volume from D and DUA strata (m3/year)                | 82 |
| Figure 8-2.   | Comparison of Caribou 30/20 rule in P6 combined Caribou Zone and APM Area             | 84 |
| Figure 8-3.   | Comparison of Caribou 30/20 rule in P9 combined Caribou Zone and APM Area             | 84 |
| Figure 8-4. ( | Comparison of Percent of Alternative Patch Management in the combined Caribou Zone ar | nd |
| APM A         | rea                                                                                   | 85 |
|               | Comparison of P6 Rank1 area harvested.                                                |    |
| Figure 8-6. ( | Comparison of P6 Rank2 area harvested.                                                | 87 |
| Figure 8-7. ( | Comparison of P9 Rank1 area harvested.                                                | 88 |
| Figure 8-8. ( | Comparison of P9 Rank2 area harvested.                                                | 88 |

# 1. Introduction

Manning Diversified Forest Products Ltd. (MDFP) has a Forest Management Agreement (FMA) Area that originally consisted of two FMU's, P6 and P9, which are now referred to as FMU P16<sup>1</sup>. As part of the FMP development, a Timber Supply Analysis was conducted. The TSA process involved evaluation of management alternatives and selection of a PFMS, with an associated AAC. This document describes the process used to derive the PFMS and determine the associated AAC.

<sup>&</sup>lt;sup>1</sup> For the purposes of this document, all three FMU titles are used where appropriate.

# 2. Landbase

The Landbase Version 4 was used to derive the Preferred Forest Management Scenario (PFMS). The landbase creation is described in the FMP Landbase Netdown, however a summary of the final values is presented in Table 2-1 and Table 2-2 and graphically in Figure 2-1 and Figure 2-2. The effective date of the landbase is May 1, 2005.



#### Table 2-1. Landbase deletion hierarchy.

|                                      |         | Area (ha) |         | % Gross |
|--------------------------------------|---------|-----------|---------|---------|
| Landbase Category                    | FMU P6  | FMU P9    | Total   | - Area  |
| Gross Landbase                       | 297,531 | 298,147   | 595,677 | 100%    |
| Patented Land (D_STATUS)             | ·       | ·         | ·       |         |
| PSP SRD PSP Buffer                   | 239     | -         | 239     | 0%      |
| PATENT Protected Areas               | 270     | -         | 270     | 0%      |
| Total Patented Land                  | 509     | -         | 509     | 0%      |
| Running Sum of Area Deleted          | 509     | -         | 509     | 0%      |
| Landbase Remaining                   | 297,022 | 298,147   | 595,169 | 100%    |
| Access (D_ACCESS, D_SEISMIC)         |         |           |         |         |
| ROAD Roads                           | 2,394   | 755       | 3,149   | 1%      |
| PIPE Pipelines                       | 1,037   | 1,009     | 2,045   | 0%      |
| SEISMIC Seismic Lines                | 5,154   | 6,326     | 11,479  | 2%      |
| Total Access                         | 8,584   | 8,089     | 16,674  | 3%      |
| Running Sum of Area Deleted          | 9,093   | 8,089     | 17,182  | 3%      |
| Landbase Remaining                   | 288,438 | 290,057   | 578,495 | 97%     |
| Non-Forested (D_NONFOR)              |         |           |         |         |
| WATER Water Body                     | 3,163   | 635       | 3,798   | 1%      |
| ANTHRO Anthropogenic Non-Vegetated   | 997     | 718       | 1,716   | 0%      |
| NNF Non-Forested                     | 36,934  | 20,979    | 57,913  | 10%     |
| NNV Naturally Non-Vegetated          | 3,670   | 4,136     | 7,806   | 1%      |
| Total Non-Forested                   | 44,765  | 26,468    | 71,233  | 12%     |
| Running Sum of Area Deleted          | 53,858  | 34,558    | 88,416  | 15%     |
| Landbase Remaining                   | 243,673 | 263,589   | 507,262 | 85%     |
| Recent Burns (D_BURN)                |         |           |         |         |
| BURN Recent Burn                     | 319     | 2         | 321     | 0%      |
| Fotal Burn                           | 319     | 2         | 321     | 0%      |
| Running Sum of Area Deleted          | 54,177  | 34,559    | 88,736  | 15%     |
| Landbase Remaining                   | 243,354 | 263,587   | 506,941 | 85%     |
| Non-Productive (D_TPR)               |         |           |         |         |
| U Unproductive                       | 1,790   | 185       | 1,975   | 0%      |
| F Decid TPR = F                      | 1,106   | 1,776     | 2,881   | 0%      |
| Fotal Non-Productive                 | 2,896   | 1,960     | 4,856   | 1%      |
| Running Sum of Area Deleted          | 57,073  | 36,520    | 93,592  | 16%     |
| Landbase Remaining                   | 240,458 | 261,627   | 502,085 | 84%     |
| Water Buffers (D_BUF)                |         |           |         |         |
| RIVBK River Breaks                   | 8,384   | 14,647    | 23,031  | 4%      |
| SWAN Swan Lake Buffer                | 137     | -         | 137     | 0%      |
| WBUF Water Buffers                   | 639     | 618       | 1,257   | 0%      |
| Total Water Buffers                  | 9,160   | 15,265    | 24,425  | 4%      |
| Running Sum of Area Deleted          | 66,233  | 51,785    | 118,017 | 20%     |
| Landbase Remaining                   | 231,298 | 246,362   | 477,660 | 80%     |
| Subjective Deletions (D_SUBJ, D_ISO) |         |           |         |         |
| WETLAND Wetland                      | 54,160  | 115,774   | 169,934 | 29%     |
| ADENS A Density Stands               | 3,071   | 5,084     | 8,155   | 1%      |
| LARCH Larch                          | 70      | 22        | 92      | 0%      |
| SBLEAD Sb Leading and TPR < G        | 1,835   | 847       | 2,682   | 0%      |
| CBUSB APM Area Black Spruce          | 340     | -         | 340     | 0%      |
| CBUSW APM Area White Spruce          | 1,166   | -         | 1,166   | 0%      |
| CBUPL APM Area Lodgepole Pine        | -       | -         | -       | 0%      |
| SO Isolated Stands                   | 0       | -         | 0       | 0%      |
| Fotal Subjective Deletions           | 60,641  | 121,727   | 182,369 | 31%     |
| Total Area Deleted                   | 126,874 | 173,512   | 300,386 | 50%     |
| Active Landbase                      | 170,657 | 124,634   | 295,291 | 50%     |



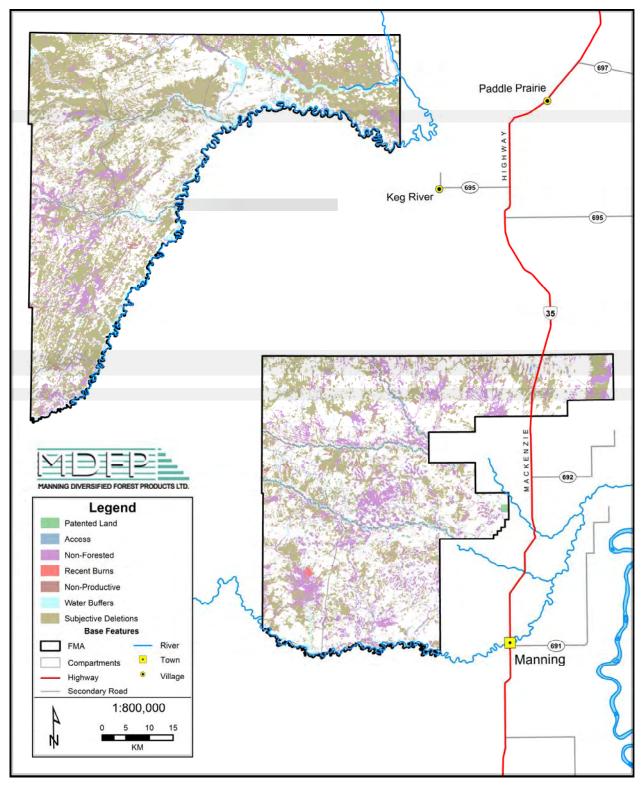



Figure 2-1. Passive landbase by deletion category (seismic is not shown).



### Table 2-2. Active landbase yield strata.

|                     |                                                       | <b>Overstory Density</b>                            |                                                                | Understory Density                                       |                                                          | Total                                               |  |
|---------------------|-------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------|----------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------|--|
| Status              | Strata                                                | B CD                                                |                                                                | A BCD                                                    |                                                          |                                                     |  |
| FMU P6              |                                                       |                                                     |                                                                |                                                          |                                                          |                                                     |  |
| Natural             | D                                                     | 2,921                                               | 6,881                                                          | -                                                        | -                                                        | 9,802                                               |  |
|                     | DC                                                    | 1,083                                               | 1,709                                                          | -                                                        | -                                                        | 2,793                                               |  |
|                     | DCU                                                   | 3,805                                               | 5,633                                                          | _                                                        | _                                                        | 9,438                                               |  |
|                     | CD                                                    | 1,609                                               | 2,089                                                          | -                                                        | _                                                        | 3,699                                               |  |
|                     | CDU                                                   | 3,258                                               | 2,205                                                          |                                                          | _                                                        | 5,463                                               |  |
|                     | PL                                                    | 3,079                                               | 4,011                                                          | _                                                        | _                                                        | 7,090                                               |  |
|                     | SB                                                    | 415                                                 | 1,935                                                          | -                                                        | _                                                        | 2,350                                               |  |
|                     | SW                                                    | 22,268                                              | 20,737                                                         | -                                                        | _                                                        | 43,005                                              |  |
|                     | DUX                                                   | 141                                                 | 104                                                            | _                                                        | _                                                        | 245                                                 |  |
|                     | DUSW                                                  | -                                                   | -                                                              | 44,302                                                   | 26,950                                                   | 71,252                                              |  |
|                     | Total                                                 | 38,580                                              | 45,304                                                         | 44,302                                                   | 26,950                                                   | 155,136                                             |  |
| Managed             | D                                                     | 412                                                 | 1,658                                                          | 44,302                                                   | 20,750                                                   | 2,070                                               |  |
| wanageu             | DC                                                    | 264                                                 | 534                                                            | -                                                        | -                                                        | 798                                                 |  |
|                     | DCU                                                   | 204                                                 | 26                                                             |                                                          | -                                                        | 35                                                  |  |
|                     | CD                                                    | 1,097                                               |                                                                |                                                          | -                                                        |                                                     |  |
|                     | CDU                                                   |                                                     | 3,929                                                          | -                                                        | -                                                        | 5,027                                               |  |
|                     |                                                       | 0                                                   |                                                                | -                                                        | -                                                        |                                                     |  |
|                     | PL                                                    | 208                                                 | 386                                                            | -                                                        | -                                                        | 594                                                 |  |
|                     | SB                                                    | 15                                                  | 49                                                             | -                                                        | -                                                        | 64                                                  |  |
|                     | SW                                                    | 2,003                                               | 1,477                                                          | -                                                        | -                                                        | 3,480                                               |  |
|                     | DUX                                                   | 11                                                  | 191                                                            | -                                                        | -                                                        | 202                                                 |  |
|                     | DUSW                                                  | -                                                   | -                                                              | 1,644                                                    | 1,598                                                    | 3,242                                               |  |
|                     | Total                                                 | 4,019                                               | 8,260                                                          | 1,644                                                    | 1,598                                                    | 15,521                                              |  |
| P6 Total            |                                                       | 42,600                                              | 53,563                                                         | 45,946                                                   | 28,548                                                   | 170,657                                             |  |
| FMU P9              | _                                                     |                                                     |                                                                |                                                          |                                                          |                                                     |  |
| Natural             | D                                                     | 12,592                                              | 47,289                                                         | -                                                        | -                                                        | 59,880                                              |  |
|                     | DC                                                    | 768                                                 | 1,823                                                          | -                                                        | -                                                        | 2,591                                               |  |
|                     | DCU                                                   | 1,298                                               | 3,037                                                          | -                                                        | -                                                        | 4,335                                               |  |
|                     | CD                                                    | 462                                                 | 1,583                                                          | -                                                        | -                                                        | 2,045                                               |  |
|                     | CDU                                                   | 947                                                 | 1,336                                                          | -                                                        | -                                                        | 2,283                                               |  |
|                     | PL                                                    | 3,068                                               | 15,659                                                         | -                                                        | -                                                        | 18,726                                              |  |
|                     | SB                                                    | 749                                                 | 1,098                                                          | -                                                        | -                                                        | 1,847                                               |  |
|                     | SW                                                    | 5,189                                               | 3,765                                                          | -                                                        | -                                                        | 8,954                                               |  |
|                     | DUX                                                   | 812                                                 | 1,182                                                          | -                                                        | -                                                        | 1,994                                               |  |
|                     | DUSW                                                  | -                                                   | -                                                              | 11,500                                                   | 8,039                                                    | 19,539                                              |  |
|                     | Total                                                 | 25,885                                              | 76 771                                                         | 11,500                                                   | 8,039                                                    | 122,195                                             |  |
|                     | Total                                                 | 25,005                                              | 76,771                                                         | 11,500                                                   | 0,057                                                    | ,                                                   |  |
| Managed             | D                                                     |                                                     | /6,//1                                                         | -                                                        | -                                                        | -                                                   |  |
| Managed             |                                                       | - 13                                                |                                                                | -                                                        | -                                                        | - 24                                                |  |
| Managed             | D                                                     | -                                                   | -                                                              |                                                          | -                                                        | -                                                   |  |
| Managed             | D<br>DC                                               | - 13                                                | - 10                                                           | -                                                        | -                                                        | -                                                   |  |
| Managed             | D<br>DC<br>DCU                                        | 13                                                  | - 10 -                                                         | -                                                        |                                                          | -                                                   |  |
| Managed             | D<br>DC<br>DCU<br>CD                                  | - 13                                                | -<br>10<br>-                                                   |                                                          |                                                          | -                                                   |  |
| Managed             | D<br>DC<br>DCU<br>CD<br>CDU                           | - 13<br>                                            | -<br>10<br>-<br>-<br>-                                         |                                                          | -<br>-<br>-<br>-                                         | -                                                   |  |
| Managed             | D<br>DC<br>DCU<br>CD<br>CDU<br>PL<br>SB               | -<br>13<br>-<br>-<br>-                              | -<br>10<br>-<br>-<br>-<br>-                                    |                                                          |                                                          | - 24<br>                                            |  |
| Managed             | D<br>DCU<br>CD<br>CDU<br>PL<br>SB<br>SW               | -<br>-<br>-<br>-<br>-                               | -<br>10<br>-<br>-<br>-<br>-<br>-                               | -<br>-<br>-<br>-<br>-<br>-                               | -<br>-<br>-<br>-<br>-<br>-<br>-                          | -<br>24<br>-<br>-<br>-<br>-                         |  |
| Managed             | D<br>DCU<br>CD<br>CDU<br>PL<br>SB<br>SW<br>DUX        | -<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>10<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>24<br>-<br>-<br>-<br>-<br>-<br>-               |  |
| Managed             | D<br>DCU<br>CD<br>CDU<br>PL<br>SB<br>SW<br>DUX<br>DUX | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>10<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- |                                                          | -<br>24<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>2,416 |  |
| Managed<br>P9 Total | D<br>DCU<br>CD<br>CDU<br>PL<br>SB<br>SW<br>DUX        | -<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>10<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-                     | -<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>-<br>- | -<br>24<br>-<br>-<br>-<br>-<br>-<br>-               |  |



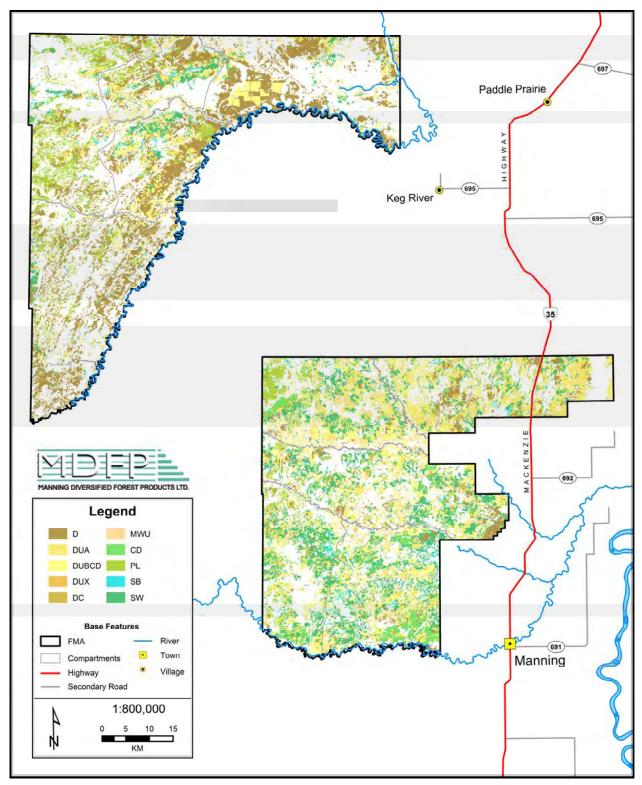
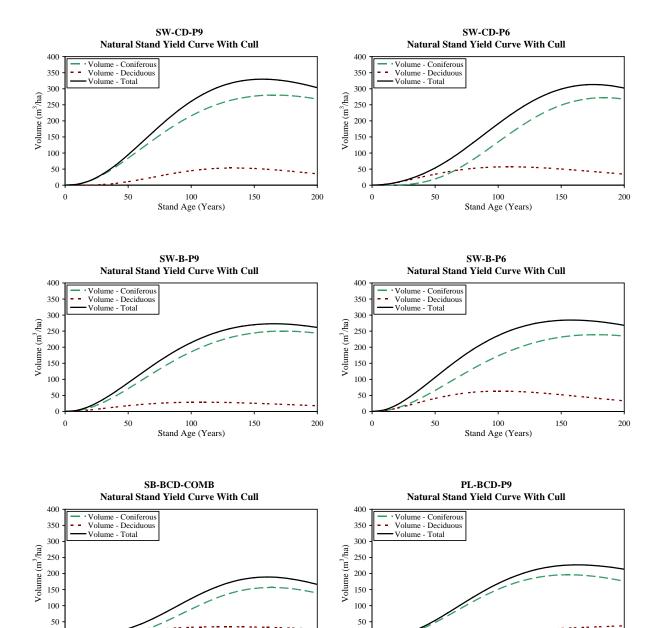



Figure 2-2. Active landbase by Yield Strata.


# 3. Yield Curves

Yield curve development is described in the FMP Yield Curve Development. The yield curves were used exactly as presented in the Yield Curve Development; no modifications were made in the timber supply model. The final yield curves are presented in this section for reference.

Utilization standards associated with the yield curves is presented in Table 3-1. All curves are reduced for cull. The Post-91 Managed curves have been modified to account for regeneration lag. Natural stand yield curves are shown in Figure 3-1. Pre-91 Managed curves are shown in Figure 3-2. Post-91 Managed curves are shown in Figure 3-3. Figure 3-4 shows the understory protection post-treatment curve, however this treatment was not used in the PFMS. Tree improvement curves are shown in Figure 3-5.

| Species Type | Log Length (m) | Stump Diameter (cm) | Top Diameter (cm) | Stump Height (m) |
|--------------|----------------|---------------------|-------------------|------------------|
| Coniferous   | 2.6            | 15.0                | 11.1              | 0.3              |
| Deciduous    | 2.6            | 15.0                | 10.0              | 0.3              |





Stand Age (Years)

Figure 3-1. Natural stand yield curves.

Stand Age (Years)

Timber Supply Analysis

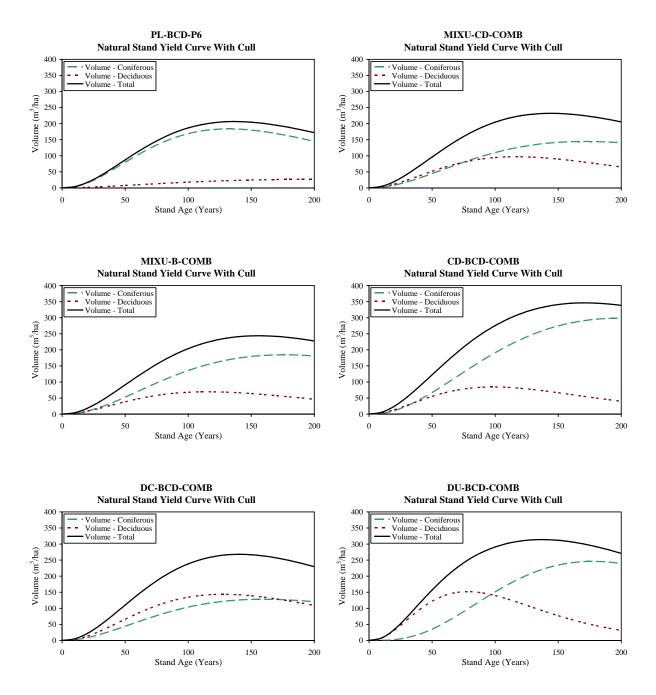
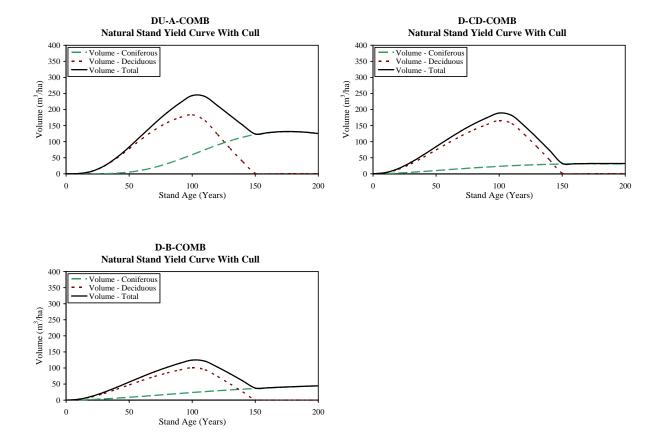
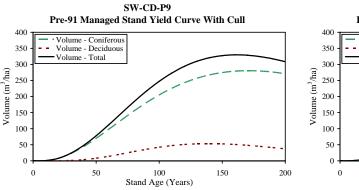
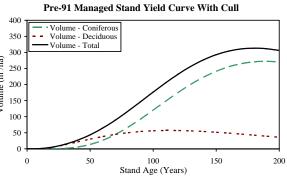
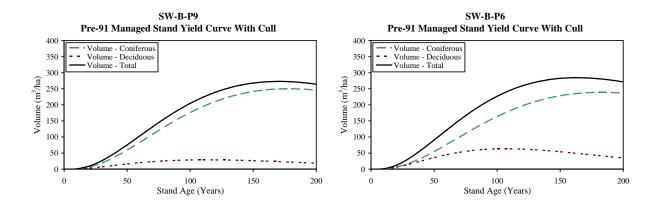



Figure 3-1. Natural stand yield curves. (Continued)





Figure 3-1. Natural stand yield curves. (Continued)







SW-CD-P6



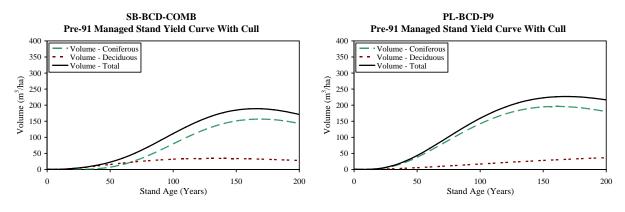



Figure 3-2. Pre-91 Managed stand yield curves.



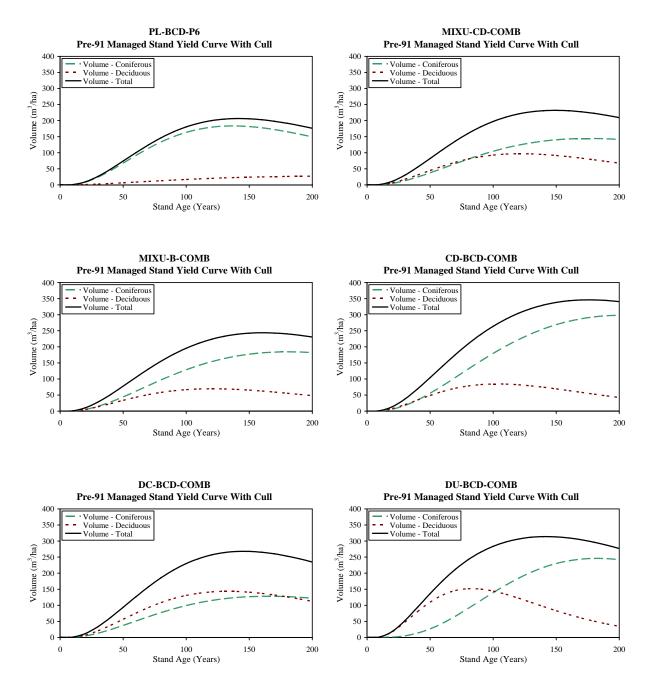
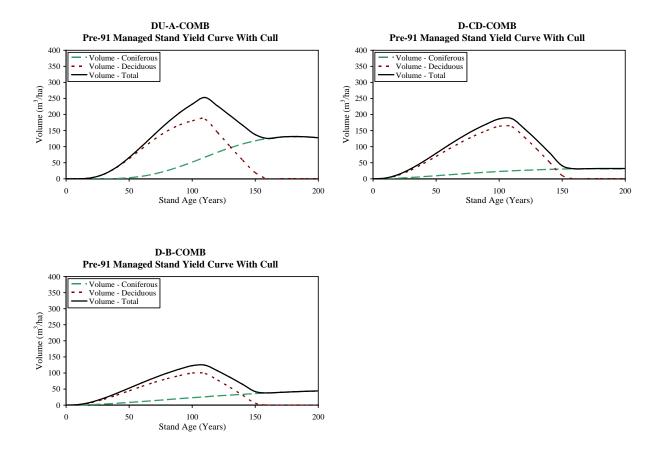
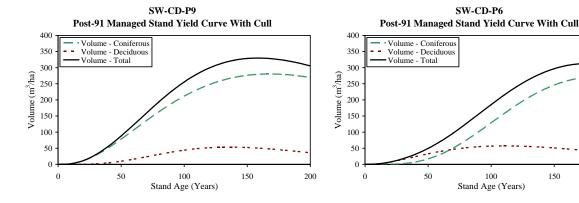
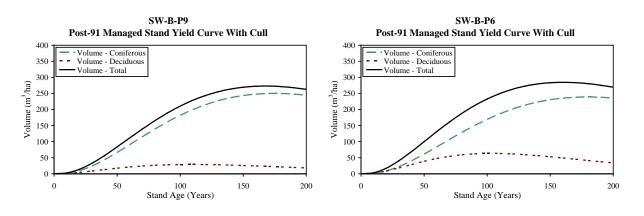



Figure 3-2. Pre-91 Managed stand yield curves. (Continued)







Figure 3-2. Pre-91 Managed stand yield curves. (Continued).




200

100

150





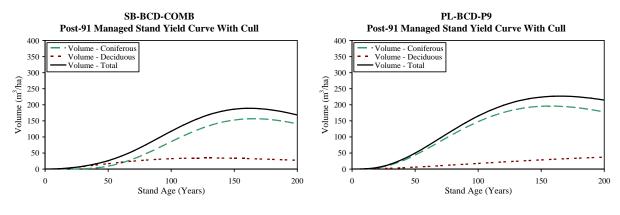



Figure 3-3. Post-91 Managed stand yield curves.

Timber Supply Analysis

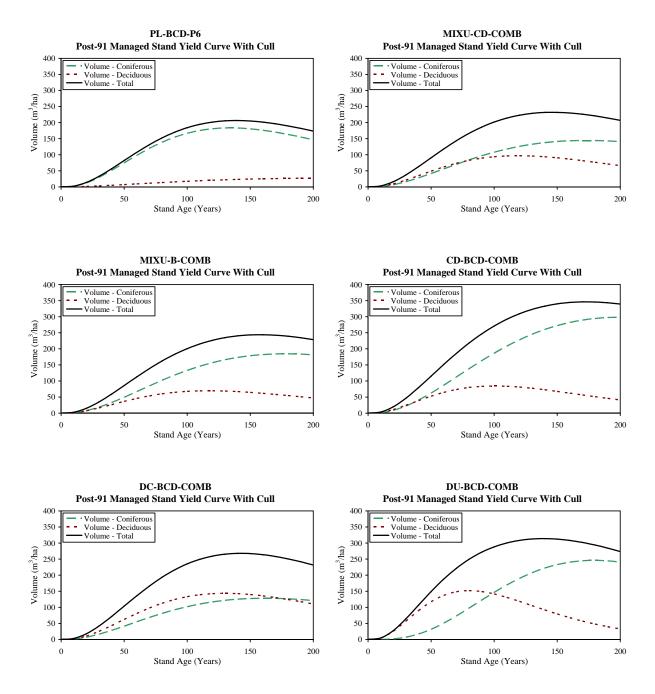
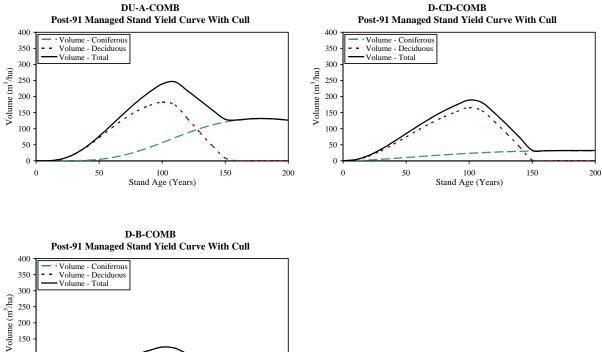




Figure 3-3. Post-91 Managed stand yield curves. (Continued)





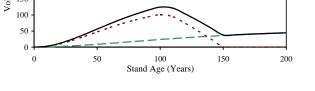



Figure 3-3. Post-91 Managed stand yield curves. (continued)

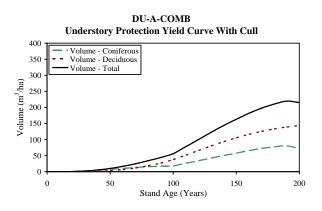



Figure 3-4. Understory protection yield curve.

Timber Supply Analysis

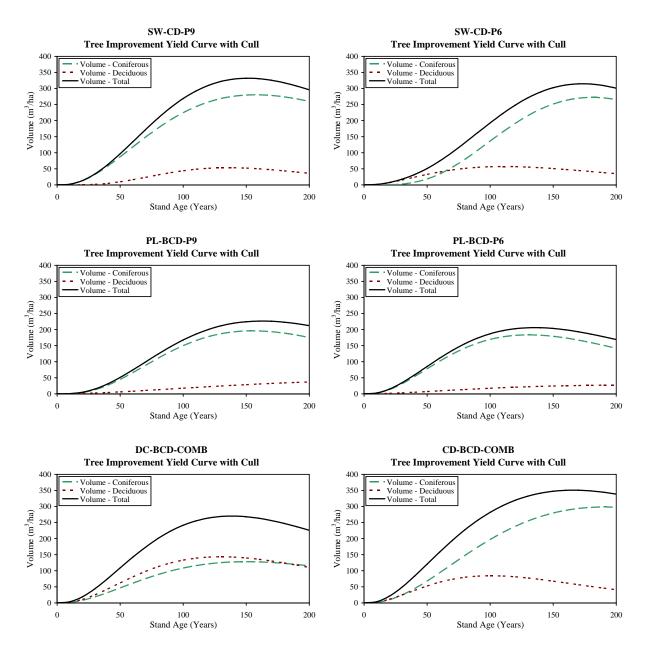


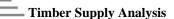

Figure 3-5. Tree improvement yield curves.

# 4. Modeling Tools

Two timber supply modeling tools were used: Woodstock<sup>©</sup> for non-spatial analysis and Patchworks<sup>©</sup> for spatial analysis. The Patchworks interface allows the conversion of Woodstock models into Patchworks format, therefore common datasets were utilized to ensure continuity and meaningful comparison of results.

Woodstock was used for strategic, non-spatial analysis to test and compare different management assumptions. Many scenarios in Patchworks dealing with spatial issues were also compared, and for this TSA, the recommended harvest level and the spatial harvest sequence were set using a scenario developed in Patchworks.

### 4.1 Woodstock


Woodstock is a strategic forest estate-modeling tool developed by Remsoft<sup>2</sup>. It was used for strategic analysis of timber supply and comparisons of alternative strategies and formulations. This strategic analysis provides insight for the resolution of specific issues including growing stock, minimum harvest age and harvest flow.

Woodstock is non-spatial, therefore every unique type is rolled up into forest classes (TSA themes by age class). The model can then apply treatments to all or a portion of that unique forest class. Post-treatment transitions representing one to many relationships are handled using percentages. The optimizer selects the optimal combination of treatments throughout the entire planning horizon to solve the objective function.

Woodstock can be formulated as either:

- basic optimization where there is one modeling objective with rigid constraints; or
- goal programming where the modeling objective is to minimize deviations from a goal or target.

<sup>&</sup>lt;sup>2</sup> Remsoft Inc. 332 Brunswick Street, Fredericton, NB E3B 1H1



Goal programming requires the identification of a weighting, which is the penalty for deviating from the goal, to allow the model to rank the goals. Typically, a high weighting results in a small deviation from the goal.

For this timber supply analysis, only one Woodstock formulation was used:

• the basic optimization, where the modeling objective was to maximize harvest volume subject to constraints such as evenflow harvest volume and minimum ending growing stock.

Woodstock uses a mathematical technique called linear programming to quickly determine the absolute answer to the management assumptions.

A structured, progressive approach was used in the development and analysis of Woodstock scenarios. Increasing levels of constraints were applied in successive scenarios to meet forest management objectives and to answer specific management questions and issues. The end result of the Woodstock stage was scenarios that met all of the non-spatial key objectives.

Woodstock runs and reports in 5-year periods in this analysis.

#### 4.1.1 Linear Programming

Linear programming is a commonly used mathematical tool used in forest management. Davis et al (2001) "Problems that are linear with respect to the relationships between the decision variables can be solved by a technique called linear programming. By linear we mean the operators are restricted to plus or minus." Linear programming is important largely due to its speed and accuracy in finding the 'optimal' solution with regards to a single objective and several constraints.

### 4.2 Patchworks

Patchworks is relatively new to forest management planning in Alberta. It is a spatially-explicit wood supply modeling tool developed by Spatial Planning Systems<sup>3</sup>. Patchworks was designed to provide the user with operational-scale decision-making capacity within a strategic analytical environment. Trade-off analysis of alternative operational decisions are quickly determined and visually displayed.

Patchworks operates at the polygon level. In Patchworks terminology polygons are the smallest element, which in this case are the subdivided AVI stands in the TSA Landbase. The treatments applied to each polygon are an *all or nothing* decision for the model. There is only one post-treatment transition for each polygon. When Patchworks operates, one or more polygons adjacent to each other that meet specific criteria can be combined to form "patches". The TSA Landbase is made up of many small polygons to allow for more options in creating patches.

The tool is fully spatial through time and the impact on an adjacent polygon 190 years into the future is considered in the first year of the simulation. Patchworks decision space can be thought of as a matrix consisting of each polygon and each potential outcome for every time slice in the planning horizon.

Patchworks is a heuristic model that attempts to achieve close to an optimal solution for the defined targets (similar to the goal-programming in Woodstock). Its modeling objective is to minimize deviation

<sup>&</sup>lt;sup>3</sup> Spatial Planning Systems. 134 Frontenac Cres., Box 908, Deep River, ON K0J 1P0

from the modeling targets. The term *goal* will be used in this document to define the modeling targets used in both Patchworks and Woodstock models, to distinguish them from other types of targets. Patchworks uses a stochastic solving technique called simulated annealing. Unlike Woodstock, spatial relationships (*i.e.* patch size distributions) can be applied in the objective function.

In this analysis, a variety of goals were defined such as harvest levels, minimum growing stock levels, minimum seral stage areas, maximum block size and range of regeneration patch sizes by period. Goals were represented by different features (*e.g.* cubic meters or hectares) and weighting factors, which ranked the importance and contribution of each feature towards the modeling objective. Patchworks allows planners to explore the interactions between attributes such as physical wood supply, harvesting economics and other values.

Patchworks solves in annual periods, however, for this analysis it was set up to model and report in 1 two year period and 40 five year increments to match Woodstock reporting. The initial two year period represents the 'hard coded' 2005 and 2006 harvest years, so that the model begins forecasting in 2007.

Patchworks scenarios were developed from Woodstock, to ensure identical assumptions, including landbase, yield curves, treatments and responses.

#### 4.2.1 Simulated Annealing

A description of simulated annealing from Davis et al. (2001) is:

an algorithm that simulates the cooling of materials in a heat bath – a process known as annealing. Essentially, (the) algorithm simulates the change in energy of a metal during the cooling process, and models the rate of change until it converges to a steady "frozen" state. Searching the feasible regions of a planning problem with the objective of converging on an optimal solution (a steady state) is the goal of simulated annealing. The technique moves from one "good" solution to a neighbouring solution, generally by randomly changing a single piece of the solution, perhaps the harvest prescription for a management unit.

Davis further describes the process in which a random starting point is chosen (feasible or infeasible) and then as new choices are made, the model decides if the new treatment selection is better than the current treatment selection. If the new selection is better, then it replaces and becomes the current solution. This process is repeated many times until no new choices provide a better solution set than what is currently being used. Furthermore, Lockwood and Moore (1993) state that "a simulated annealing procedure mimics this slow cooling process by gradually rearranging the elements of a system from a disordered state to an ordered, or nearly optimal state."

The comparison to linear programming is difficult, but at least one study has examined the differences between the different modeling techniques. Boston and Bettinger (1999) compared simulated annealing with Monte Carlo Integer programming and with Tabu search heuristics, and then compared all three with linear programming solutions to four different problems. They concluded that "Simulated annealing found the highest solution value for three of the four planning problems, and was less than 1% from the highest objective function value in the fourth problem."

# 5. Assumptions and Inputs

### 5.1 Overview

Forecasting timber supply is a complex process that requires many inputs and assumptions. The purpose of this section is to explicitly describe the final inputs and assumptions used in the forecasting for the Manning Diversified FMA FMP. In many cases sensitivity analysis was completed to compare different sets of assumptions. The results of these analyses allowed the Core Planning Team to make decisions on which set of assumptions or inputs to use in the FMP. This section shows only the final set of assumptions and inputs used in the analysis. To allow them to be implemented in a TSA model, certain assumptions and inputs represent simplifications of natural systems.

The Preferred Forest Management Scenario was derived using a spatial modeling tool, therefore a Spatial Harvest Sequence (SHS) showing the timing and treatments of all stands throughout the planning horizon is available. The first 20 years of the SHS identifies the stands scheduled for harvest. Maintaining the sustainable harvest level and other values is assured by following the 20-year spatial harvest sequence.

This section describes the key objectives of the analysis, the desired future forest condition and the inputs and outputs of the many scenarios that were analyzed.

### **5.2 Modeling Objectives**

### 5.2.1 Deciduous Overstory With Conifer Understory.

The DU stratum comprises over 30% of the active landbase, and is legally part of the coniferous landbase as identified in the FMA agreement. It makes up a significant portion of the secondary deciduous volume that DMI receives under their Deciduous Timber Allocation (DTA), along with providing significant volume to the primary conifer AAC.



The DU stratum can be difficult to manage because the highest deciduous volume is attained when it is harvested between the ages of 80 - 110 years old, while the highest conifer volume is attained when it is harvested older than 140 years old. MDFP and DMI have developed a strategy to allocate the DU strata in a manner that benefits both companies.

#### 5.2.1.1 Refined strata

The first step was to further refine the DU stratum into three separate strata.

- DUA stratum Understory leading species is white spruce and understory density is A.
- DUBCD stratum Understory leading species is white spruce and understory density is B, C, or D. (referred to as DUSW in model)
- DUX stratum Understory leading species is not white spruce.

#### **5.2.1.2** Clearcut Treatments

Clearcutting the DU strata is the main harvest option available to MDFP and DMI. Two clearcut treatments were defined in the model:

- Deciduous Priority Clearcut Clearcut when deciduous is merchantable and subsequently plant conifer to create mixedwood stands. The expectation is that most of the existing conifer understory will be left standing and that deciduous will sucker and regenerate on its own to create a stand transition to the DC stratum.
- Conifer Priority Clearcut Clearcut when the conifer understory is merchantable and subsequently plant conifer to create mixedwood stands. The expectation is that deciduous will sucker and regenerate on its own and transition to the DC stratum.

MDFP and DMI agreed on using a combination of these two treatments. Table 5-1 shows the treatment to be applied to the DU strata.

| Understory |         | ry     |                                                                                 |
|------------|---------|--------|---------------------------------------------------------------------------------|
| Species    | Density | Strata | Treatment                                                                       |
| SW         | Α       | DUA    | Either Conifer or Deciduous priority based on individual stand characteristics. |
| SW         | BCD     | DUBCD  | Conifer priority only.                                                          |
| Other      | ABCD    | DUX    | Deciduous priority only.                                                        |

#### Table 5-1. Clearcut treatments based on understory condition.

The DUA stands are eligible for two treatments, deciduous priority and coniferous priority clearcut. A maximum of 50% of the DUA strata are scheduled for deciduous priority and the remainder is scheduled for coniferous priority. For each treatment, a limit of 800 ha/year was set.

For operational efficiencies and to reduce conifer mortality, the model was encouraged to schedule most of the deciduous priority treatments on stands with an understory height less than 12 meters. The height class of the understory is very difficult to predict as a function of overstory age, so this division of stands is based on original stand conditions. No attempt was made to 'grow' the understory height.

# 5.2.1.3 Understory Protection Treatments

The stands that would be eligible for understory protection are difficult to determine from AVI and will only be chosen on a site specific basis. As such, the PFMS did not use this treatment.

### 5.2.2 Caribou Habitat

The FMP incorporates both the Provincial Caribou Zone and the Alternative Patch Management Area (APMA). Within the Caribou Zone and the APMA, forest management strategies to support caribou habitat considerations are implemented. The Caribou Zone and APMA is shown in Figure 5-1.

### 5.2.2.1 30-20 Rule

TSA constraints were introduced to reduce the habitat for ungulates other than caribou in an effort to reduce the predator population. Habitat preferred by other ungulates was generalized as deciduous or mixedwood covertypes (D, DU, DC, DCU, CD or CDU) less than 30 years old. To ensure ungulate habitat was maintained at an acceptable level within the Caribou Zone and the APMA, the area of the landbase under 30 years old was constrained to less than 20% of the gross landbase within each FMU, for each of the following covertype categories: D, DU, DC, DCU, CD and CDU. This strategy also helped ensure significant areas of Mature and Old seral stage forests were retained.

### 5.2.2.2 Patch Size

Availability of contiguous habitat (i.e., large patches) was identified as significant in determining the quality of woodland caribou habitat. The TSA targeted a larger patch size for harvest within the Caribou Zone and APMA in FMU P6 and in the Caribou Zone in FMU P9. This was accommodated in the model by maximizing harvest patches greater than 300 hectares. This strategy also served to minimize the amount of access required.

### 5.2.2.3 Access Control

Reducing the number of access entries was accomplished by controlling the number of entries into the Caribou Zone and APMA. Within P6, these areas are bisected by both the Hotchkiss and the Meikle Rivers. The TSA constrained the access to these three sub-zones to permit only one to be open in each ten-year harvest period. In addition, harvesting a number of small or isolated stands (patches) was deferred until surrounding stands met minimum merchantability criteria. In the Caribou Zone in P9, the TSA was constrained so that harvesting was deferred from a large portion of the Caribou Zone. The mature timber being sequenced was sparse, which would have resulted in opening significant access and requiring multiple entry periods to recover relatively small timber volumes.



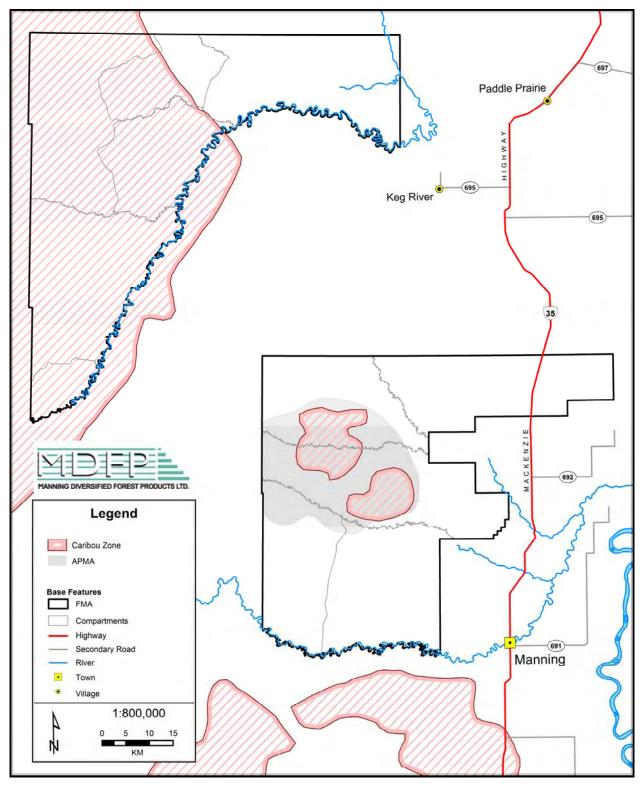



Figure 5-1. Caribou Zone and APMA.

# 5.2.3 Landbase Losses

Two mechanisms account for large scale productivity losses on the landbase. The first is an AAC recalculation trigger. When the harvest level or managed landbase is reduced by more than 2.5% from the current level, MDFP may be required to recalculate their harvest level based on the new reduced landbase. This mechanism is designed to deal with catastrophic losses.

The second mechanism is based on the historical method of dealing with fire within the TSA. Burnt areas are not included in the active landbase for the TSA until the area is inventoried or surveyed to confirm regeneration. These areas are not in the active landbase even though they are very likely to regenerate to forest, since most of the forest types in Alberta are adapted to frequent fires. It can be assumed that as fires are burning on the landbase area and are 'removed from the landbase' due to fire for the next recalculation, and that other areas that have previously been burned and removed from the landbase will be returning to the landbase. Therefore fire has inherently been accounted into the harvest level calculations through both a recalculation trigger and post fire area removal.

### 5.2.4 Natural Disturbance

In the Patchworks model, patch size targets were used to control the spatial harvest patterns. The patch size of 60-200 ha was maximized to encourage the model to group operations and to mimic the range natural disturbances. Smaller patch sizes automatically happen on the landscape, as the spatial arrangement of existing forest structure requires some smaller patches to be harvested. Larger patch sizes greater than 200 ha also occur in limited quantities.

# 5.2.5 Mountain Pine Beetle

In recent years, Mountain Pine Beetle has made large advances across British Columbia and Alberta. These advances are causing massive mortality in mature pine, and must be considered in the planning process.

SRD's Mountain Pine Beetle Rating system, which includes three components, was used to assess the PFMS. The first component to the rating system was the 'Pine Rating' or Stand Susceptibility Index (SSI) of the stands (0 - 100). The second component of the rating system was the 'Compartment Risk' (High, Moderate, Low). The final component to the risk assessment was the climate factor (0 - 1.0). All three of these were combined to find the rank (1, 2, or 3 with 1 being the highest rank) of the stand (Table 5-2).



|                            |                         |         | S        | SI       |           |
|----------------------------|-------------------------|---------|----------|----------|-----------|
| Climate Factor (per stand) | <b>Compartment Risk</b> | 0 to 30 | 31 to 50 | 51 to 80 | 81 to 100 |
| Very Suitable 1.0          | High                    | 1       | 1        | 1        | 1         |
|                            | Moderate                | 2       | 1        | 1        | 1         |
|                            | Low                     | 2       | 2        | 1        | 1         |
| Highly Suitable 0.8        | High                    | 1       | 1        | 1        | 1         |
|                            | Moderate                | 2       | 2        | 1        | 1         |
|                            | Low                     | 2       | 2        | 2        | 1         |
| Moderately Suitable 0.5    | High                    | 2       | 1        | 1        | 1         |
|                            | Moderate                | 2       | 2        | 2        | 1         |
|                            | Low                     | 3       | 2        | 2        | 2         |
| Low Suitability 0.2        | High                    | 2       | 1        | 1        | 1         |
|                            | Moderate                | 3       | 2        | 2        | 2         |
|                            | Low                     | 3       | 2        | 2        | 2         |
| Very Low Suitability 0.1   | High                    | 3       | 2        | 2        | 2         |
|                            | Moderate                | 3       | 3        | 2        | 2         |
|                            | Low                     | 3       | 3        | 3        | 3         |

#### Table 5-2. Pine stand rank calculation

Timber Supply Analysis

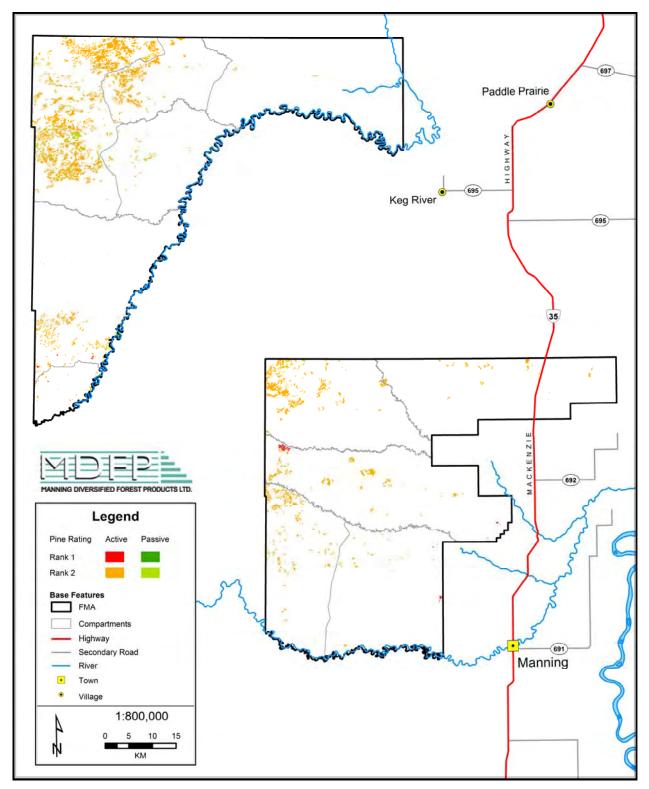



Figure 5-2. P16 pine stand rankings.

The SSI of the stands was calculated using the ASRD Pine Rating model. All of the default input parameters with the effective date of 2007 were used in the SSI. Compartment Risk was determined by



an ASRD representative and is based on proximity to existing populations of MPB infestations. The final component of the mountain pine beetle rating was the 'Climate Factor'. 'Climate Factor' is a measure of the effect that climate will have on beetle development, or the probability that they will undergo one year lifecycles.

The Climate Factor and Compartment Risk comprise the main effect of the MPB ranking since a climate factor of  $\geq 0.8$  with a high compartment risk will automatically result in a Rank 1 stand even if there is only 10% pine in the stand. Alternatively if the Compartment rank is Low and the Climate Factor is  $\leq 0.5$  the highest the MPB Rank would be is 2 even if the SSI is 100 (highest SSI possible).

ASRD provided programming that assigns the SSI and Climate Factor to the landbase. This program uses AVI attributes to assign the SSI to the forest, once the start year has been decided. Because this program does not include updates for fires or harvesting that occurred after AVI, a process was undertaken to assign the SSI's to the landbase polygons and update this information for fires and harvesting.

The model prioritized harvesting towards the high risk Rank1 and Rank2 stands. A map of the all stands assigned to Rank1 or Rank2 is shown in Figure 5-2. Most of the pine in FMU P9 is currently too young to be merchantable.

#### 5.2.6 FireSmart

The FireSmart Management section in Annex 3 of the Alberta Forest Management Planning Standard describes the four-step process to forecast the relationship between the harvest sequence and the Fire Behaviour Potential (FBP). The four-step process is applied to the results of the harvest sequence, but does not include provisions for controlling the model while it is running. The four step process was completed after the PFMS was complete.

In an attempt to incorporate a FBP proxy into the TSA, The Forestry Corp., in conjunction with ASRD developed a set of curves that were used to influence the model to reduce the Fire Behaviour Potential. These curves assigned a FPB code to each age of each yield strata. This allowed the creation of patch targets to reduce the size of contiguous patches of susceptible fuel types.

#### 5.2.6.1 FBP Codes

The FBP codes were loaded into the model as yield curves for each of the strata types. The code for each strata changes over time. Table 5-3 shows the yield strata to FBP code relationship and Table 5-4 shows the initial state of the forest with regard to the FBP codes.

|                 |             |            |               | FB            | SP Code    |            |            |            |            |
|-----------------|-------------|------------|---------------|---------------|------------|------------|------------|------------|------------|
| Density         | o1b (years) | d1 (years) | m1-25 (years) | m1-75 (years) | c1 (years) | c2 (years) | c3 (years) | c4 (years) | c6 (years) |
| D Strata        |             |            |               |               |            |            |            |            |            |
| AB              | 0-20        | 21+        |               |               |            |            |            |            |            |
| CD              | 0-10        | 11+        |               |               |            |            |            |            |            |
| <b>DU Strat</b> | ta          |            |               |               |            |            |            |            |            |
| X_AB            | 0-20        | 21-40      | 41+           |               |            |            |            |            |            |
| X_CD            | 0-10        | 11-40      | 41+           |               |            |            |            |            |            |
| DC Strat        | ta          |            |               |               |            |            |            |            |            |
| AB              | 0-20        | 21-40      | 41+           |               |            |            |            |            |            |
| CD              | 0-10        | 11-40      | 41+           |               |            |            |            |            |            |
| <b>CD</b> Strat | ta          |            |               |               |            |            |            |            |            |
| ABCD            | 0-20        |            |               | 21+           |            |            |            |            |            |
| PL Stra         | ta          |            |               |               |            |            |            |            |            |
| AB              | 0-20        |            |               |               |            |            | 41+        | 21-40      |            |
| CD              | 0-10        |            |               |               |            |            | 41+        | 11-40      |            |
| SW Stra         | ta          |            |               |               |            |            |            |            |            |
| AB              | 0-30        |            |               |               |            | 31+        |            |            |            |
| CD              | 0-20        |            |               |               |            | 31-60      | 61+        |            | 21-30      |
| SB Strat        | a           |            |               |               |            |            |            |            |            |
| AB              | 0-30        |            |               |               | 31+        |            |            |            |            |
| CD              | 0-20        |            |               |               | 21-40      | 41+        |            |            |            |

Table 5-4. Year zero (baseline) FBP codes.

|              | Ac             | tive Landb     | ase      | Pa      | ssive Land     | base     | G              | Fross Land     | base     |
|--------------|----------------|----------------|----------|---------|----------------|----------|----------------|----------------|----------|
| FBP Code     | <b>P6</b> (ha) | <b>P9</b> (ha) | FMA (ha) | P6 (ha) | <b>P9</b> (ha) | FMA (ha) | <b>P6</b> (ha) | <b>P9</b> (ha) | FMA (ha) |
| c1           | 452            | 751            | 1,203    | 29,241  | 89,319         | 118,560  | 29,693         | 90,070         | 119,763  |
| c2           | 24,650         | 7,184          | 31,834   | 28,677  | 10,699         | 39,376   | 53,327         | 17,883         | 71,211   |
| c3           | 24,694         | 21,547         | 46,241   | 2,145   | 1,723          | 3,868    | 26,839         | 23,270         | 50,109   |
| c4           | 1,545          | 45             | 1,590    | 2,843   | 50             | 2,892    | 4,387          | 95             | 4,482    |
| сб           | 469            | -              | 469      | 34      | -              | 34       | 503            | -              | 503      |
| d1           | 13,103         | 62,329         | 75,432   | 7,604   | 24,260         | 31,864   | 20,707         | 86,589         | 107,296  |
| olb          | 10,273         | 24             | 10,297   | 32,213  | 23,271         | 55,484   | 42,486         | 23,295         | 65,781   |
| m1-25        | 72,999         | 22,097         | 95,096   | 3,251   | 4,768          | 8,019    | 76,251         | 26,865         | 103,115  |
| m1-75        | 7,477          | 2,045          | 9,522    | 544     | 3,079          | 3,623    | 8,021          | 5,124          | 13,146   |
| NONE         | 14,995         | 8,612          | 23,607   | 13,389  | 10,016         | 23,405   | 28,384         | 18,629         | 47,012   |
| Total        | 170,657        | 124,634        | 295,291  | 119,941 | 167,186        | 287,127  | 290,598        | 291,821        | 582,418  |
| Non-Forested | -              | -              | -        | 5,153   | 8,105          | 13,258   | 5,153          | 8,105          | 13,258   |
| Grand Total  | 170,657        | 124,634        | 295,291  | 125,094 | 175,292        | 300,386  | 295,751        | 299,926        | 595,677  |

### 5.2.6.2 Patch Sizes of 'C' FBP Code Types

For the purposes of addressing wildfire threat reduction Objective 5.2.1.1, the TSA model tracks the patch size of the 'C' types. The 'C' types are FBP code c1, c2, c3, c4 and c6. Table 5-5 shows the patch size of the forest that is in the five 'C' types at year zero.



|                 | Patch s    | ize of "C' | FBP code ty | ypes (ha)  | Patch size of |              |             |  |  |  |  |  |
|-----------------|------------|------------|-------------|------------|---------------|--------------|-------------|--|--|--|--|--|
|                 |            | 500 -      | 1000 -      |            |               | None 'C' FBP | Grand Total |  |  |  |  |  |
| FMA             | 0-500 (ha) | 1000 (ha)  | 2000 (ha)   | 2000+ (ha) | Total (ha)    | type (ha)    | (ha)        |  |  |  |  |  |
| Active Landbase |            |            |             |            |               |              |             |  |  |  |  |  |
| P6              | 21,921     | 5,429      | 6,422       | 18,038     | 51,810        | 118,847      | 170,657     |  |  |  |  |  |
| P9              | 9,713      | 1,393      | 1,710       | 16,712     | 29,527        | 95,107       | 124,634     |  |  |  |  |  |
| FMA             | 31,633     | 6,822      | 8,131       | 34,750     | 81,337        | 213,954      | 295,291     |  |  |  |  |  |
| Passive I       | Landbase   |            |             |            |               |              |             |  |  |  |  |  |
| P6              | 22,931     | 8,874      | 10,864      | 20,270     | 62,939        | 62,155       | 125,094     |  |  |  |  |  |
| P9              | 26,882     | 6,210      | 8,775       | 59,924     | 101,792       | 73,500       | 175,292     |  |  |  |  |  |
| FMA             | 49,814     | 15,083     | 19,639      | 80,194     | 164,731       | 135,655      | 300,386     |  |  |  |  |  |
| Gross La        | andbase    |            |             |            |               |              |             |  |  |  |  |  |
| P6              | 44,852     | 14,303     | 17,286      | 38,308     | 114,749       | 181,002      | 295,751     |  |  |  |  |  |
| P9              | 36,595     | 7,603      | 10,485      | 76,636     | 131,319       | 168,607      | 299,926     |  |  |  |  |  |
| FMA             | 81,447     | 21,906     | 27,771      | 114,944    | 246,067       | 349,609      | 595,677     |  |  |  |  |  |

| Table 5-5. | Year zero patch sizes of 'C' FBP code types. |
|------------|----------------------------------------------|
|------------|----------------------------------------------|

#### 5.2.7 Seral Stages

Seral stages were built into the model using the parameters in Table 5-6. The seral stages were used to monitor the 'Old', 'Old plus Mature' and 'Regeneration' requirements in Objective 1.1.1.1.

Table 5-6. Seral Stage age categories.

|        | Seral Stage  |        |         |       |  |  |  |  |  |  |  |  |  |
|--------|--------------|--------|---------|-------|--|--|--|--|--|--|--|--|--|
| Strata | Regeneration | Young  | Mature  | Old   |  |  |  |  |  |  |  |  |  |
| D      | 0-15         | 16-60  | 61-100  | 101 + |  |  |  |  |  |  |  |  |  |
| DU     | 0-15         | 16-60  | 61-100  | 101 + |  |  |  |  |  |  |  |  |  |
| MW     | 0-15         | 16-70  | 71-110  | 111 + |  |  |  |  |  |  |  |  |  |
| MWU    | 0-15         | 16-70  | 71-110  | 111+  |  |  |  |  |  |  |  |  |  |
| PL     | 0-15         | 16-70  | 71-120  | 121 + |  |  |  |  |  |  |  |  |  |
| SB     | 0-15         | 16-105 | 106-160 | 161+  |  |  |  |  |  |  |  |  |  |
| SW     | 0-15         | 16-105 | 106-150 | 151+  |  |  |  |  |  |  |  |  |  |

#### 5.2.8 Old Interior Forest

The TSA model defines Old Interior forest patches as any patch greater than 120 ha that is comprised of stands greater than 120 years old. Patches are composed of both the active and passive landbase and include all strata.

### 5.2.9 Green-up

Greenup was not used in the MDFP model. The green-up strategy for the FMP is presented in Section 3.6 in Implementation.

# **5.3 Harvest and Planting Actions**

Three types of actions are built into the timber supply model: Clearcut, Understory Protection and Tree Improvement Planting.

### 5.3.1 Clearcut

The clearcut action is the most basic of all actions in the model. It is a stand replacing action in that the age of the stand is reset to zero years of age and all of the volume existing on the yield curve is removed from the stand. Cull reductions and regeneration delays are incorporated in the yield curves, therefore these reductions are integrated into the model.

In the DU stratum, two clearcut treatments were created to allow different entry options based on the species desired. As MDFP and DMI have agreed to joint access of these stand types, and the individual timing of entry is very different for each company due to coniferous and deciduous tree ages, two separate treatments were created. The two actions are called "Clearcut DU for Conifer Priority" and "Clearcut DU for Deciduous Priority". The difference between these treatments is the age range at which a clearcut action is allowed on the DUA density stands. The BCD density stands are included in the conifer priority while the DUX stratum is included in the deciduous priority. The DUX stratum is the DU stands where the leading conifer understory species is not white spruce. Each strata has defined ages for harvest as identified in Table 5-7.

|                    | Harv                    | est Age         |
|--------------------|-------------------------|-----------------|
| Strata             | Minimum (years)         | Maximum (years) |
| <b>Clearcut</b> Ac | ction                   |                 |
| D                  | 80                      | 130             |
| DC                 | 80                      | N/A             |
| CD                 | 80                      | N/A             |
| MWU                | 80                      | N/A             |
| PL                 | 80                      | N/A             |
| SB                 | 80                      | N/A             |
| SW                 | 80                      | N/A             |
| <b>Clearcut D</b>  | U with Deciduous Prio   | rity Action     |
| DUA                | 80                      | 130             |
| DUX                | 80                      | 130             |
| Clearcut D         | U with Conifer Priority | y Action        |
| DUA                | 140                     | N/A             |
| DUBCD              | 110                     | N/A             |

#### Table 5-7. Clearcut harvest ages

### **5.3.2 Understory Protection**

The understory protection treatment was developed to allow a partial removal of the deciduous overstory species while allowing most of the understory species to remain behind. However, the understory protection treatment was not used in the PFMS and therefore is not part of the SHS. The treatment is only explained here as it was used in many of the scenarios leading up to the PFMS.



The on ground application of this treatment is difficult and expensive and has limited benefits. Sustainability of a stand for understory protection is very specific and can only be assessed on the ground. For these reasons, the treatment was initially used on a limited basis, to a maximum of 200 ha per year.

This treatment is a partial harvest treatment, meaning it does not reset the stand age and only part of the volume is removed from the stand. Table 5-8 shows the harvest ages in which the treatment could be applied by the model.

|                                              | Harvest Age                                 |                 |  |  |  |  |  |  |  |  |  |  |
|----------------------------------------------|---------------------------------------------|-----------------|--|--|--|--|--|--|--|--|--|--|
| Strata                                       | Minimum (years)                             | Maximum (years) |  |  |  |  |  |  |  |  |  |  |
| Understory Protection Initial Removal Action |                                             |                 |  |  |  |  |  |  |  |  |  |  |
| DUA                                          | 80                                          | 90              |  |  |  |  |  |  |  |  |  |  |
| Understory 2                                 | Understory Protection Final Clearcut Action |                 |  |  |  |  |  |  |  |  |  |  |
| DUA                                          | 120                                         | N/A             |  |  |  |  |  |  |  |  |  |  |

#### Table 5-8. Understory protection harvest ages

#### **5.3.3** Tree Improvement Planting

The tree improvement planting action allows the model to simulate the planting of improved planting stock. It is applied within five years from a clearcut action and does not reset the age of the stand. It simply moves the stand from the normal regeneration curve to the tree improvement curve. It can only be implemented within the white spruce (region G2) and lodgepole pine (region J) tree improvement breeding regions.

# **5.4 Strata Transitions**

Each stand that has an action applied to it has a defined stratum to which it transitions to. Most strata transition back to the fully stocked versions (BCD or CD density) of the original strata, while the understory strata transition to either the conifer leading mixedwood or the deciduous leading mixedwood strata. Table 5-9 shows the individual strata transitions for each treatment type.

|                   | Original Str             | ata                | Post    | -Treatment Strata        |
|-------------------|--------------------------|--------------------|---------|--------------------------|
| Species           | <b>Overstory Density</b> | Understory Density | Species | <b>Overstory Density</b> |
| Clearcut 7        | Freatment                |                    |         |                          |
| D                 | В                        | -                  | D       | CD                       |
| D                 | CD                       | -                  | D       | CD                       |
| DU                | BCD                      | BCD                | CD      | BCD                      |
| DC                | BCD                      | -                  | DC      | BCD                      |
| CD                | BCD                      | -                  | CD      | BCD                      |
| DCU               | В                        | -                  | DC      | BCD                      |
| DCU               | CD                       | -                  | DC      | BCD                      |
| CDU               | В                        | -                  | CD      | BCD                      |
| CDU               | CD                       | -                  | CD      | BCD                      |
| PL                | BCD                      | -                  | PL      | BCD                      |
| SB                | BCD                      | -                  | SB      | BCD                      |
| SW                | В                        | -                  | SW      | CD                       |
| SW                | CD                       | -                  | SW      | CD                       |
| <b>Clearcut I</b> | OUA with Deciduous Pr    | iority Treatment   |         |                          |
| DU                | BCD                      | А                  | DC      | BCD                      |
| Clearcut I        | OUA with Conifer Prior   | rity Treatment     |         |                          |
| DU                | BCD                      | А                  | DC      | BCD                      |
| Understor         | y Protection Treatment   | ţ                  |         |                          |
| DU                | BCD                      | А                  | CD      | BCD                      |

Table 5-9. Strata transitions due to harvest activities.

# **5.5 Access Control**

Each scenario is also controlled by the Access Control table (Table 5-10). This table outlines the polygon availability in each period. The first column shows the item value which is being controlled. The field in the landbase that is used for the access control is called  $Access_C4$ .

The columns with colour represent the status in each period. The first period is 2 years long while all other periods are 5 years long. The three colours represent three actions that the model can take, and the values in each of the cell represent the area harvested in each in the PFMS.

- Pink No harvest activities are allowed,
- Yellow Harvest actions as defined by the pre-schedule must be followed unless stand in inoperable,
- Green Any harvest activity is allowed.

The Access Control is also shown in a series of maps in Figure 5-3, Figure 5-4, Figure 5-5 and Figure 5-6.

#### Table 5-10. Access Control used in PFMS.

|                | Hectares harvested in each time period (Ha) |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                |                                             |       |       |       |       |       |       |       | Year  |       |       |       |       |       |       |       |       |
| ACCESS_C4      | 1-2                                         | 1-5   | 6-10  | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 | 71-75 | 76-80 |
| LV410_C0_CBOUT |                                             |       |       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| NONE_C0_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| DECID_C1_CBIN  |                                             |       |       |       |       | 0     | 0     |       |       |       |       | 0     | 0     | 0     | 0     | 0     | 0     |
| LV410_C1_CBIN  |                                             |       |       |       |       | 0     | 0     |       |       |       |       | 11    | 43    | 0     | 0     | 1     | 0     |
| CONIF_C1_CBOUT |                                             | 296   | 2,725 |       |       | 1,444 | 1,979 | 415   | 484   | 576   | 668   | 755   | 405   | 349   | 266   | 269   | 327   |
| DECID_C1_CBOUT |                                             | 1,335 | 213   |       |       | 190   | 140   | 58    | 49    | 168   | 26    | 200   | 128   | 262   | 94    | 37    | 165   |
| LV410_C1_CBOUT |                                             |       |       |       |       | 1,122 | 978   | 474   | 777   | 729   | 541   | 976   | 496   | 84    | 439   | 1,056 | 740   |
| LV420_C1_CBOUT |                                             |       |       |       |       | 50    | 57    | 0     | 9     | 24    | 114   | 254   | 9     | 0     | 0     | 0     | 24    |
| NONE_C1_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C1_CBOUT   | 0                                           | 925   |       |       |       | 0     | 11    | 0     | 32    | 0     | 0     | 0     | 1     | 6     | 0     | 75    | 43    |
| CONIF_C2_CBIN  |                                             |       |       |       |       | 347   | 247   |       |       |       |       | 0     | 434   | 208   | 346   | 0     | 81    |
| DECID_C2_CBIN  |                                             |       |       |       |       | 73    | 4     |       |       |       |       | 0     | 250   | 18    | 170   | 0     | 58    |
| LV410_C2_CBIN  |                                             |       |       |       |       | 3     | 1     |       |       |       |       | 0     | 1     | 37    | 12    | 0     | 0     |
| LV420_C2_CBIN  |                                             |       |       |       |       | 9     | 0     |       |       |       |       | 0     | 0     | 0     | 2     | 0     | 0     |
| NONE_C2_CBIN   |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| CONIF_C2_CBOUT |                                             |       |       | 2,993 | 3,212 | 311   | 237   | 442   | 382   | 280   | 448   | 470   | 398   | 157   | 511   | 510   | 244   |
| DECID_C2_CBOUT |                                             |       |       | 405   | 785   | 7     | 11    | 32    | 12    | 140   | 56    | 103   | 38    | 181   | 68    | 120   | 56    |
| LV410_C2_CBOUT |                                             |       |       | 13    | 13    | 0     | 0     | 0     | 3     | 7     | 0     | 2     | 8     | 0     | 28    | 5     | 0     |
| LV420_C2_CBOUT |                                             |       |       |       |       | 33    | 16    | 187   | 264   | 113   | 35    | 248   | 66    | 123   | 68    | 117   | 13    |
| NONE_C2_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C2_CBOUT   | 0                                           |       |       | 0     | 25    | 0     | 0     | 13    | 5     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| CONIF_C3_CBIN  |                                             | 759   | 973   |       |       |       |       | 566   | 968   |       |       |       |       | 739   | 605   | 231   | 502   |
| DECID_C3_CBIN  |                                             | 930   | 20    |       |       |       |       | 138   | 144   |       |       |       |       | 173   | 157   | 210   | 247   |
| LV410_C3_CBIN  |                                             |       |       |       |       |       |       | 205   | 305   |       |       |       |       | 36    | 164   | 88    | 163   |
| LV420_C3_CBIN  |                                             |       |       |       |       |       |       | 49    | 77    |       |       |       |       | 51    | 29    | 23    | 19    |
| NONE_C3_CBIN   |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C3_CBIN    | 70                                          | 1,893 |       |       |       | 0     | 0     | 0     | 15    | 0     | 0     | 0     | 0     | 8     | 8     | 137   | 35    |

#### May 31, 2007

#### Table 5-10. Access Control used in PFMS. (continued).

|                | Hectares harvested in each time period (Ha) |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|----------------|---------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|                |                                             |       |       |       |       |       |       |       | Year  |       |       |       |       |       |       |       |       |
| ACCESS_C4      | 1-2                                         | 1-5   | 6-10  | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 | 71-75 | 76-80 |
| CONIF_C3_CBOUT |                                             | 441   | 765   |       |       | 163   | 119   | 541   | 183   | 428   | 89    | 456   | 390   | 399   | 102   | 324   | 151   |
| DECID_C3_CBOUT |                                             | 1,120 | 65    |       |       | 28    | 7     | 115   | 114   | 92    | 65    | 16    | 328   | 128   | 72    | 18    | 287   |
| LV410_C3_CBOUT |                                             |       |       |       |       | 5     | 19    | 143   | 145   | 59    | 0     | 3     | 102   | 2     | 63    | 6     | 34    |
| LV420_C3_CBOUT |                                             |       |       |       |       | 73    | 14    | 36    | 22    | 52    | 0     | 44    | 0     | 83    | 1     | 119   | 21    |
| NONE_C3_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C3_CBOUT   | 2,816                                       | 493   |       |       |       | 0     | 0     | 1     | 4     | 112   | 40    | 14    | 12    | 23    | 15    | 11    | 9     |
| CONIF_C4_CBIN  |                                             |       |       | 381   | 790   |       |       |       |       | 226   | 145   |       |       | 189   | 10    | 335   | 124   |
| DECID_C4_CBIN  |                                             |       |       | 107   | 417   |       |       |       |       | 26    | 138   |       |       | 230   | 5     | 140   | 131   |
| LV410_C4_CBIN  |                                             |       |       | 1     | 12    |       |       |       |       | 3     | 1     |       |       | 3     | 0     | 2     | 0     |
| LV420_C4_CBIN  |                                             |       |       |       |       |       |       |       |       | 3     | 4     |       |       | 10    | 0     | 48    | 17    |
| NONE_C4_CBIN   |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C4_CBIN    | 0                                           | 0     |       | 1,285 | 47    | 0     | 0     | 0     | 0     | 25    | 0     | 0     | 0     | 3     | 0     | 54    | 54    |
| CONIF_C4_CBOUT |                                             | 1,329 | 758   |       |       | 1,032 | 323   | 461   | 499   | 551   | 419   | 250   | 538   | 673   | 197   | 0     | 721   |
| DECID_C4_CBOUT |                                             | 1,279 | 187   |       |       | 43    | 0     | 3     | 178   | 128   | 96    | 8     | 370   | 85    | 86    | 18    | 44    |
| LV410_C4_CBOUT |                                             |       |       |       |       | 99    | 32    | 124   | 204   | 7     | 2     | 0     | 12    | 109   | 3     | 0     | 0     |
| LV420_C4_CBOUT |                                             |       |       |       |       | 54    | 42    | 9     | 66    | 104   | 28    | 0     | 30    | 82    | 7     | 0     | 3     |
| NONE_C4_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C4_CBOUT   | 0                                           | 781   |       |       |       | 31    | 36    | 0     | 0     | 16    | 0     | 0     | 31    | 0     | 0     | 0     | 0     |
| CONIF_C5_CBOUT |                                             |       |       | 1,496 | 2,480 | 361   | 611   | 566   | 373   | 429   | 822   | 705   | 322   | 289   | 461   | 564   | 355   |
| DECID_C5_CBOUT |                                             |       | 5,575 | 1,261 | 1,596 | 91    | 51    | 553   | 550   | 334   | 480   | 638   | 363   | 265   | 578   | 848   | 610   |
| LV410_C5_CBOUT |                                             |       |       | 1,204 | 616   | 211   | 74    | 197   | 259   | 502   | 292   | 584   | 59    | 207   | 366   | 207   | 223   |
| LV420_C5_CBOUT |                                             |       |       |       |       | 135   | 144   | 49    | 28    | 122   | 92    | 107   | 80    | 58    | 43    | 62    | 32    |
| NONE_C5_CBOUT  |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C5_CBOUT   | 0                                           | 1,093 |       | 0     | 7     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| CONIF_C6       |                                             |       |       |       |       | 6     | 22    | 37    | 0     | 55    | 36    | 50    |       | 0     | 0     | 32    | 0     |
| DECID_C6       |                                             |       |       |       |       | 328   | 235   | 0     | 0     | 128   | 158   | 133   | 251   | 197   | 24    | 340   | 121   |
| LV410_C6       |                                             |       |       |       |       | 5     | 2     | 0     | 0     | 0     | 0     | 1     | 1     | 0     | 1     | 0     | 0     |
| LV420_C6       |                                             |       |       |       |       | 0     | 0     | 3     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |
| NONE_C6        |                                             |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |

#### Table 5-10. Access Control used in PFMS. (Continued).

|           | Hectares harvested in each time period (Ha) |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|-----------|---------------------------------------------|-----|------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
|           |                                             |     |      |       |       |       |       |       | Year  |       |       |       |       |       |       |       |       |
| ACCESS_C4 | 1-2                                         | 1-5 | 6-10 | 11-15 | 16-20 | 21-25 | 26-30 | 31-35 | 36-40 | 41-45 | 46-50 | 51-55 | 56-60 | 61-65 | 66-70 | 71-75 | 76-80 |
| LV420_C7  |                                             |     |      |       |       | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 11    | 0     | 0     | 1     | 2     |
| NONE_C7   |                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| CONIF_C8  |                                             |     |      |       |       | 1,524 | 1,821 | 1,649 | 561   | 1,558 | 1,175 | 665   | 729   | 853   | 686   | 785   | 912   |
| DECID_C8  |                                             |     |      |       |       | 291   | 449   | 759   | 234   | 452   | 186   | 169   | 307   | 248   | 104   | 318   | 195   |
| LV410_C8  |                                             |     |      |       |       | 4     | 10    | 9     | 0     | 4     | 4     | 2     | 4     | 3     | 3     | 2     | 5     |
| LV420_C8  |                                             |     |      |       |       | 9     | 8     | 0     | 0     | 5     | 4     | 0     | 0     | 0     | 0     | 0     | 7     |
| NONE_C8   |                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| CONIF_C9  |                                             |     |      |       |       | 1,320 | 441   | 35    | 632   | 502   | 1,168 | 845   | 442   | 528   | 1,020 | 603   | 401   |
| DECID_C9  |                                             |     |      |       |       | 140   | 442   | 480   | 754   | 306   | 469   | 698   | 224   | 606   | 947   | 1,030 | 190   |
| LV410_C9  |                                             |     |      |       |       | 9     | 0     | 3     | 6     | 3     | 1     | 15    | 0     | 3     | 12    | 9     | 0     |
| NONE_C9   |                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| CONIF_C10 |                                             |     |      | 1,762 | 343   | 330   | 9     | 881   | 485   | 113   | 463   | 234   | 532   | 161   | 275   | 407   | 389   |
| DECID_C10 |                                             |     |      | 1,369 | 1,140 | 199   | 149   | 159   | 294   | 7     | 443   | 100   | 194   | 43    | 457   | 331   | 270   |
| LV410_C10 |                                             |     |      | 5     | 10    | 4     | 0     | 0     | 2     | 0     | 6     | 0     | 3     | 0     | 3     | 5     | 1     |
| LV420_C10 |                                             |     |      |       |       | 0     | 0     | 31    | 4     | 3     | 25    | 22    | 6     | 0     | 0     | 18    | 8     |
| NONE_C10  |                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| CONIF_C11 |                                             |     |      | 179   | 34    | 108   | 632   | 66    | 96    | 247   | 203   | 710   | 518   | 417   | 0     | 0     | 323   |
| DECID_C11 |                                             |     |      | 1,101 | 1,437 | 1,042 | 1,098 | 632   | 243   | 519   | 488   | 968   | 1,438 | 1,015 | 1,312 | 1,103 | 1,801 |
| LV410_C11 |                                             |     |      | 3     | 6     | 5     | 3     | 3     | 1     | 3     | 4     | 6     | 5     | 14    | 5     | 5     | 10    |
| LV420_C11 |                                             |     |      |       |       | 127   | 191   | 54    | 113   | 365   | 161   | 203   | 327   | 268   | 0     | 0     | 100   |
| NONE_C11  |                                             |     |      |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| PRE_C11   | 0                                           | 0   |      | 86    | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     | 0     |



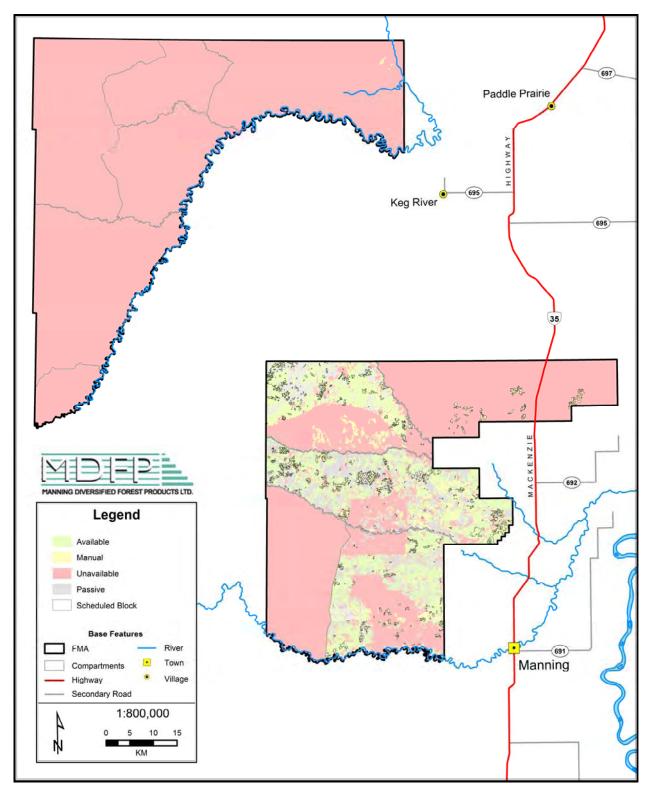



Figure 5-3. Access Control in years 1-5.

Timber Supply Analysis

**4**88

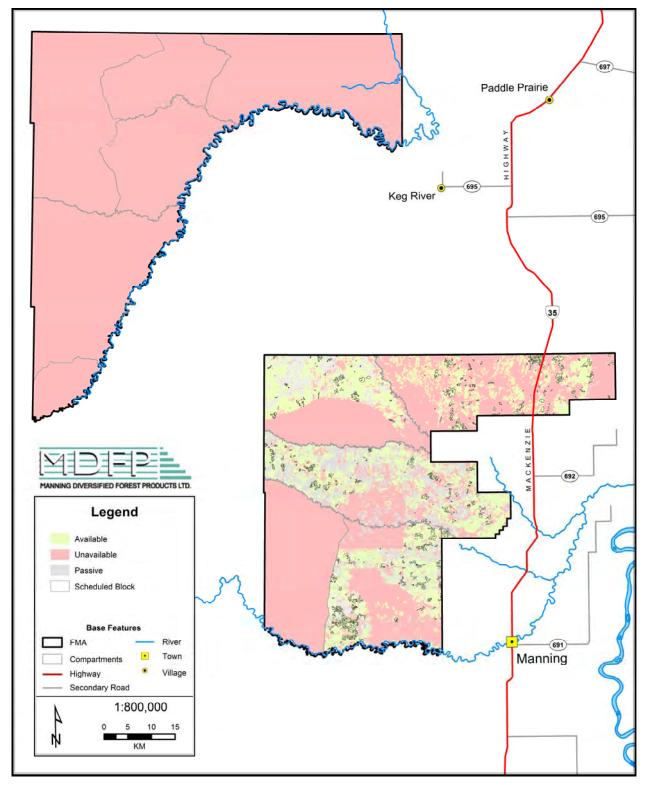



Figure 5-4. Access Control in years 6-10.



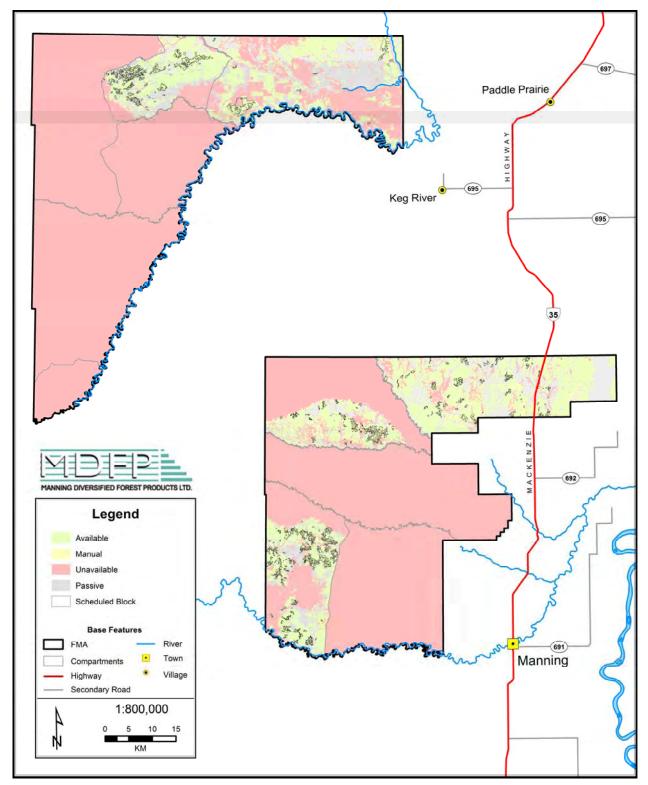



Figure 5-5. Access Control in years 11-15.



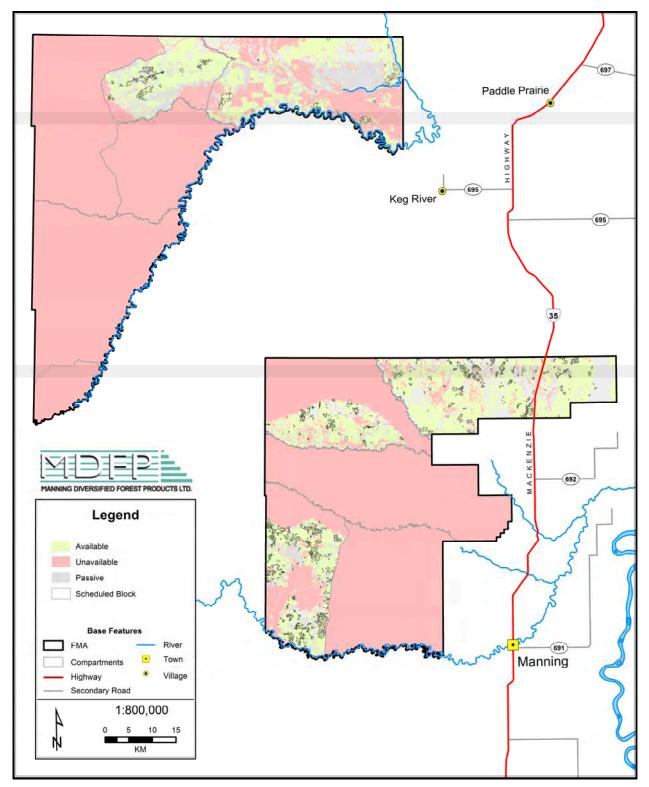



Figure 5-6. Access Control in years 16-20.

# 6. PFMS

The Preferred Forest Management Scenario (PFMS) for PMU P16 was chosen to retain the existing mixedwood focused landbase and to retain the caribou habitat within the caribou zone. The PFMS is based on the Patchworks scenario number P16\_P9003. A comparison of the strata harvested in the SHS as compared to the Active landbase strata is presented in Table 6-1. A breakdown of the SHS strata by compartment and age class for each of the first two 10 year periods is presented in Table 6-2 and Table 6-3. The results of the PFMS's are spatially explicit harvest patterns, including a 20 year spatial harvest sequence (SHS) as shown in Figure 6-1 and Figure 6-2. A list of major changes to the Patchworks model in each Round of scenarios is in Appendix I and outputs of other scenarios are in Appendix II.

|                            | Strata Harvested |        |        |       |       |        |        |        |       |          |         |
|----------------------------|------------------|--------|--------|-------|-------|--------|--------|--------|-------|----------|---------|
| -                          | D                | DUA    | DUSW   | DUX   | DC    | CD     | MWU    | PL     | SB    | SW       | Total   |
| Category                   | ha               | ha     | ha     | ha    | ha    | ha     | ha     | ha     | ha    | ha       | ha      |
| Total Active Landbase Area | 71,753           | 57,356 | 38,911 | 2,441 | 6,503 | 11,125 | 21,093 | 26,411 | 4,260 | 55,244   | 295,096 |
| Years 1-10                 |                  |        |        |       |       |        |        |        |       |          |         |
| SHS Area Harvested         | 5,657            | 6,428  | 99     | 57    | 416   | 573    | 1,101  | 1,685  | 51    | 7,888 0  | 23,957  |
| Percent Harvested          | 7.9%             | 11.2%  | 0.3%   | 2.3%  | 6.4%  | 5.2%   | 5.2%   | 6.4%   | 1.2%  | 14.3%    | 8.1%    |
| Years 11-20                |                  |        |        |       |       |        |        |        |       |          |         |
| SHS Area Harvested         | 5,843            | 6,461  | 324    | 96    | 636   | 890    | 2,321  | 2,419  | 330   | 7,303 0  | 26,622  |
| Percent Harvested          | 8.1%             | 11.3%  | 0.8%   | 3.9%  | 9.8%  | 8.0%   | 11.0%  | 9.2%   | 7.7%  | 13.2%    | 9.0%    |
| Total SHS (1-20)           |                  |        |        |       |       |        |        |        |       |          |         |
| SHS Area Harvested         | 11,500           | 12,889 | 423    | 152   | 1,052 | 1,464  | 3,422  | 4,104  | 382   | 15,192 0 | 50,579  |
| Percent Harvested          | 16.0%            | 22.5%  | 1.1%   | 6.2%  | 16.2% | 13.2%  | 16.2%  | 15.5%  | 9.0%  | 27.5%    | 17.1%   |
| Average of two decades     | 8.0%             | 11.2%  | 0.5%   | 3.1%  | 8.1%  | 6.6%   | 8.1%   | 7.8%   | 4.5%  | 13.7%    | 8.6%    |

| Table 6-1. Comparison of SHS strata harvestee | with strata profile. |
|-----------------------------------------------|----------------------|
|-----------------------------------------------|----------------------|

|               |         | Strata Harvested |       |      |     |     |     |       |       |    |       |        |  |
|---------------|---------|------------------|-------|------|-----|-----|-----|-------|-------|----|-------|--------|--|
|               | Age     | D                | DUA   | DUSW | DUX | DC  | CD  | MWU   | PL    | SB | SW    | Total  |  |
| W.C.          | Class   | ha               | ha    | ha   | ha  | ha  | ha  | ha    | ha    | ha | ha    | ha     |  |
| Years 1-10    |         |                  |       |      |     |     |     |       |       |    |       |        |  |
| 1             | 080-099 | 404              | 651   |      |     |     | 7   | 7     | 39    |    | 23    | 1,131  |  |
|               | 100-119 | 138              | 518   |      |     |     | 5   | 99    | 40    | 9  | 25    | 834    |  |
|               | 120-139 | 37               | 7     |      |     | 37  | 102 | 28    |       |    | 775   | 986    |  |
|               | 140-159 |                  |       |      |     |     | 34  | 33    |       |    | 1,598 | 1,666  |  |
|               | 160-179 |                  |       |      |     |     |     |       |       |    | 817   | 817    |  |
|               | 180-199 |                  |       |      |     |     |     |       |       |    | 18    | 18     |  |
|               | 200++   |                  |       |      |     |     |     | 25    |       |    | 18    | 43     |  |
|               | Total   | 579              | 1,176 |      |     | 37  | 149 | 191   | 80    | 9  | 3,275 | 5,496  |  |
| 3             | 080-099 | 384              | 483   |      | 30  | 8   | 4   | 1     | 5     |    | 76    | 991    |  |
|               | 100-119 | 1,167            | 355   | 7    | 27  | 7   | 6   | 13    | 175   |    | 164   | 1,920  |  |
|               | 120-139 | 197              | 325   | 6    |     | 29  | 43  | 35    |       |    | 464   | 1,099  |  |
|               | 140-159 | 56               | 17    | 14   |     | 68  | 2   | 239   | 123   |    | 658   | 1,177  |  |
|               | 160-179 |                  | 63    | 9    |     | 14  | 152 | 36    | 213   |    | 1,016 | 1,504  |  |
|               | 180-199 |                  |       |      |     |     | 43  | 65    | 124   |    | 537   | 769    |  |
|               | Total   | 1,804            | 1,243 | 36   | 57  | 126 | 249 | 390   | 641   |    | 2,914 | 7,459  |  |
| 4             | 080-099 | 165              | 178   |      |     | 13  | 8   | 46    | 152   |    | 25    | 585    |  |
|               | 100-119 | 333              | 1,023 | 63   |     | 7   | 5   | 220   | 762   |    | 168   | 2,582  |  |
|               | 120-139 |                  | 9     |      |     | 6   | 34  | 84    | 48    |    | 43    | 224    |  |
|               | 140-159 |                  |       |      |     |     |     |       |       | 42 | 191   | 234    |  |
|               | 160-179 |                  |       |      |     |     | 49  |       | 3     |    | 489   | 540    |  |
|               | 180-199 |                  |       |      |     |     | 5   | 28    |       |    | 45    | 78     |  |
|               | 200++   |                  |       |      |     |     |     |       |       |    | 91    | 91     |  |
|               | Total   | 498              | 1,210 | 63   |     | 25  | 101 | 378   | 965   | 42 | 1,052 | 4,334  |  |
| 5             | 080-099 | 1,541            | 1,785 |      |     | 185 |     | 54    |       |    | 34    | 3,600  |  |
|               | 100-119 | 979              | 1,013 |      |     | 43  | 55  | 31    |       |    | 362   | 2,485  |  |
|               | 120-139 | 255              |       |      |     |     | 19  |       |       |    | 123   | 397    |  |
|               | 140-159 |                  |       |      |     |     |     | 57    |       |    | 3     | 61     |  |
|               | 160-179 |                  |       |      |     |     |     |       |       |    | 125   | 125    |  |
|               | Total   | 2,776            | 2,799 |      |     | 228 | 75  | 143   |       |    | 648   | 6,668  |  |
| Years 1-10 To | otal    | 5,657            | 6,428 | 99   | 57  | 416 | 573 | 1,101 | 1,685 | 51 | 7,888 | 23,957 |  |

#### Table 6-2. SHS strata harvested by compartment and age class in years 1-10.

|               |         | Strata Harvested |       |      |     |     |     |       |       |     |       |        |
|---------------|---------|------------------|-------|------|-----|-----|-----|-------|-------|-----|-------|--------|
|               | Age     | D                | DUA   | DUSW | DUX | DC  | CD  | MWU   | PL    | SB  | SW    | Total  |
| W.C.          | Class   | ha               | ha    | ha   | ha  | ha  | ha  | ha    | ha    | ha  | ha    | ha     |
| Years 11-20   |         |                  |       |      |     |     |     |       |       |     |       |        |
| 2             | 080-099 | 75               | 368   |      |     | 12  | 56  | 98    | 22    | 20  | 889   | 1,540  |
| -             | 100-119 | 53               | 510   |      |     | 32  | 80  | 288   | 81    | 24  | 562   | 1,630  |
|               | 120-139 | 84               | 99    |      |     | 112 | 70  | 36    | 299   | 217 | 825   | 1,741  |
|               | 140-159 | 7                |       |      |     | 6   | 99  | 108   | 0     | 2   | 1,194 | 1,417  |
|               | 160-179 |                  |       |      |     |     |     | 30    |       |     | 973   | 1,004  |
|               | 180-199 |                  |       |      |     |     |     |       |       |     | 54    | 54     |
|               | 200++   |                  |       |      |     |     |     |       |       |     | 61    | 61     |
|               | Total   | 219              | 977   |      |     | 162 | 305 | 560   | 401   | 263 | 4,559 | 7,447  |
| 4             | 080-099 | 48               | 154   |      |     |     | 53  |       |       |     | 34    | 289    |
|               | 100-119 | 29               | 365   | 149  |     |     | 0   | 50    | 27    |     | 132   | 752    |
|               | 120-139 | 25               | 111   | 73   |     |     | 0   | 300   | 33    |     | 433   | 976    |
|               | 140-159 | 40               |       | 102  |     |     | 91  | 133   |       |     | 163   | 529    |
|               | 160-179 | 16               |       |      |     |     | 156 | 53    |       |     | 113   | 339    |
|               | 180-199 |                  |       |      |     |     |     |       |       |     | 127   | 127    |
|               | 200++   |                  |       |      |     |     |     |       |       |     | 28    | 28     |
|               | Total   | 158              | 631   | 324  |     |     | 300 | 537   | 60    |     | 1,029 | 3,040  |
| 5             | 080-099 | 405              | 2,249 |      | 87  | 35  | 52  | 283   | 341   | 47  | 277   | 3,775  |
|               | 100-119 |                  | 949   |      |     | 53  | 6   | 94    | 171   | 20  | 276   | 1,569  |
|               | 120-139 | 1                | 825   |      |     | 243 | 18  | 454   | 393   |     | 414   | 2,348  |
|               | 140-159 |                  |       |      |     | 0   | 33  | 64    | 62    |     | 275   | 434    |
|               | 160-179 |                  |       |      |     | 6   | 31  | 10    |       |     | 169   | 216    |
|               | 180-199 |                  |       |      |     |     | 31  | 31    |       |     | 244   | 307    |
|               | 200++   |                  |       |      |     |     | 11  |       |       |     |       | 11     |
|               | Total   | 406              | 4,023 |      | 87  | 337 | 182 | 936   | 967   | 67  | 1,655 | 8,660  |
| 10            | 080-099 | 2,164            | 654   |      | 8   | 137 | 60  | 237   | 939   |     | 16    | 4,215  |
|               | 100-119 | 318              |       |      |     |     |     | 44    | 15    |     | 0     | 377    |
|               | 120-139 | 36               |       |      |     |     |     |       |       |     |       | 36     |
|               | Total   | 2,518            | 654   |      | 8   | 137 | 60  | 281   | 955   |     | 16    | 4,629  |
| 11            | 080-099 | 2,147            | 146   |      |     |     |     |       | 19    |     |       | 2,312  |
|               | 100-119 | 356              |       |      |     |     |     | 6     | 18    |     | 13    | 393    |
|               | 120-139 | 38               | 30    |      |     |     |     |       |       |     | 9     | 77     |
|               | 140-159 |                  |       |      |     |     | 40  |       |       |     | 8     | 49     |
|               | 160-179 |                  |       |      |     |     | 3   |       |       |     | 13    | 16     |
|               | Total   | 2,541            | 176   |      |     |     | 43  | 6     | 36    |     | 44    | 2,847  |
| Years 11-20 T | otal    | 5,843            | 6,461 | 324  | 96  | 636 | 890 | 2,321 | 2,419 | 330 | 7,303 | 26,622 |

#### Table 6-3. SHS strata harvested by compartment and age class in years 11-20.



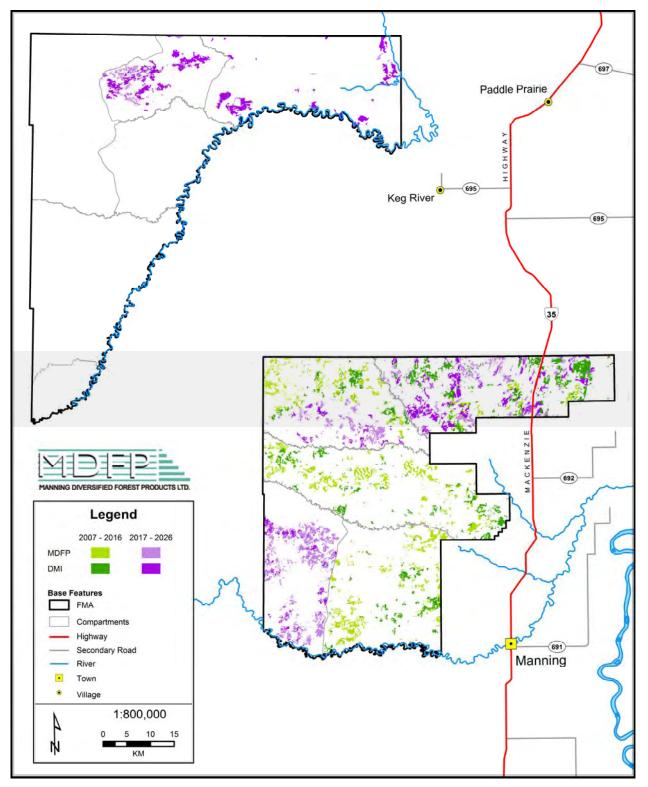



Figure 6-1. Twenty year SHS by company.

Timber Supply Analysis

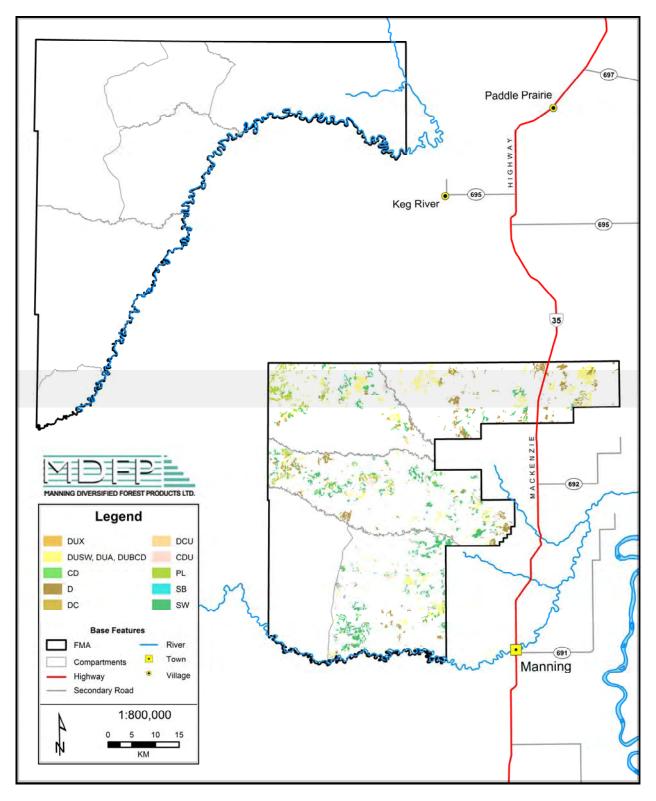



Figure 6-2. Ten year SHS by strata.

This section outlines the specific targets and outputs used in the selection of the PFMS.

Each target that is constrained in the model has a graph that represents the minimum (red line) and maximum (blue line) values targeted and the resulting actual (black line) value achieved by the model. If a blue line or red line do not appear then either the minimum or maximum value is not constrained. The name of the actual target used in the model is listed below each figure in the bullet point.

# 6.1 Harvest Volume

The harvest volume is the main target of the analysis. Both coniferous and deciduous primary volumes are even flow, while both secondary volumes are unregulated (Figure 6-3). All volumes in the model are reduced for cull and defect and are adjusted for regeneration delay, but are not reduced for stand retention.

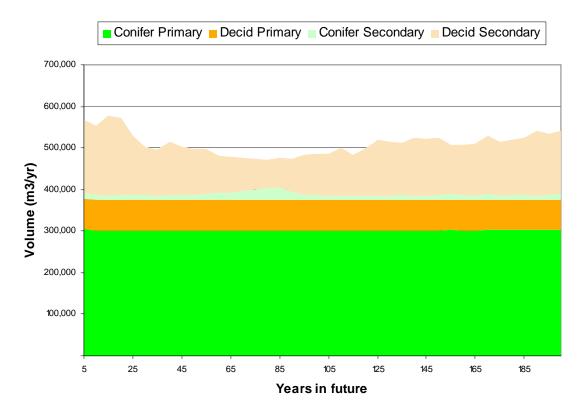



Figure 6-3. Volume Harvested.

### 6.1.1 Conifer Primary

The conifer primary volume is an even flow target as shown in Figure 6-4. It shows an even flow volume of  $301,817 \text{ m}^3$ /year from the coniferous landbase (i.e., is all strata except the D strata).

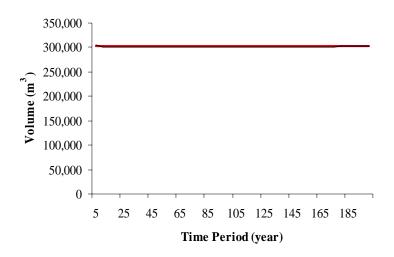
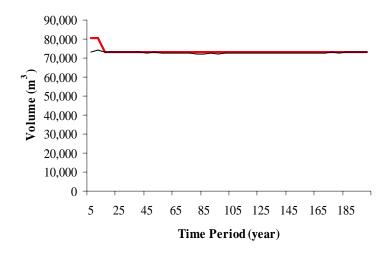


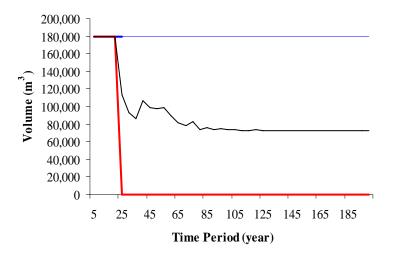

Figure 6-4. Conifer primary harvest volume.

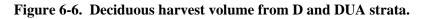
• product.FMPVol.mlb.VolSum.Conif.Primary

### 6.1.2 Deciduous Primary

The deciduous primary harvest volume is also an even flow target. In this landbase, the D stratum is the only stratum that contributes to the deciduous primary harvest volume. Due to the landbases age class structure, the first 10 years are the limiting factor in deriving volume, limiting even flow volume to 73,619 m<sup>3</sup>/year (Figure 6-5).





Figure 6-5. Deciduous primary harvest volume.


• product.FMPVol.mlb.VolSum.Decid.Primary

### 6.1.3 Deciduous volume from D and DUA strata

The DUA stratum is the largest stratum in the active landbase and both companies harvest a significant amount of volume from the stratum. As a result, an agreement for this FMP was reached were DMI would harvest a maximum of 50% of the DUA stands when the deciduous volume was the primary product (stand age 80 - 130 years), and MDFP would harvest the remaining stands when the coniferous volume was the primary volume (stand age greater than 140 years) (see Table 5-7). It is important to note that the deciduous volume from the DUA stratum is not sustainable after the first 20 years.

DMI requested that the total deciduous volume coming from the deciduous landbase and the deciduous priority DU harvest would equal their current DTA for the first 20 years. Their current DTA provided a commitment of 172,000  $\text{m}^3$ /yr of deciduous volume. The deciduous volume coming from the deciduous priority stands plus the deciduous primary volume are added together into one target and constrained to 179,730  $\text{m}^3$ /year for the first 20 years. This value factored in the original 4% reduction for stand retention, even though the actual value for stand retention of 6% will be used for the AAC calculation. This discrepancy is due to a last minute change in the deciduous stand retention amount. Figure 6-6 shows the target values.





• product.FMPVol.mlb.VolSum.Decid.DMI

# 6.2 Growing Stock

The growing stock levels of the primary volumes are generally controlled in a TSA to prevent a precipitous drop in growing stock at the end of the planning horizon. In the FMA, the conifer growing stock was controlled, while the deciduous was not. Due to the current age class structure driven by the 1950 fire in P9, the growing stock on the deciduous landbase is lower at the beginning of the scenario than at any other time, as shown in Figure 6-8. Overall, growing stock decline in either the deciduous or coniferous landbase was not a major concern in this TSA.



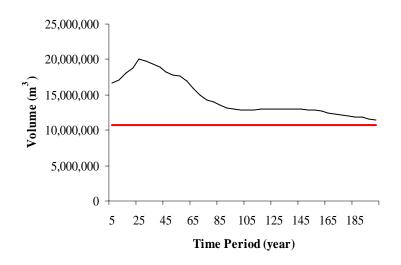
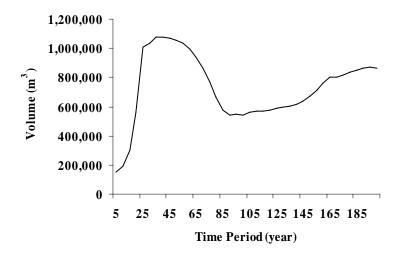
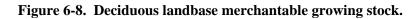





Figure 6-7. Coniferous landbase merchantable growing stock.

• feature.MerchVol.mlb.VolSum.Conif.Primary





• feature.MerchVol.mlb.VolSum.Decid.Primary

# 6.3 Harvest Type

# 6.3.1 DUA strata

The DUA stratum was constrained to provide the best mix of DUA stands to MDFP and DMI. Both the total deciduous priority clearcut and conifer priority clearcut were capped at 800 ha/year, and the conifer priority was minimized in the first 20 years (Figure 6-9 and Figure 6-10). Furthermore, within the



deciduous priority stands, height class was constrained to favour stands where the understory height class was less than 12 m by minimizing the area harvested in taller height classes as shown in Figure 6-11 and Figure 6-12.

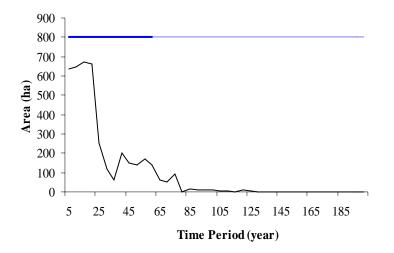



Figure 6-9. Deciduous Priority clearcut of DUA strata (ha/year).

• product.Treated.CCDUDEC

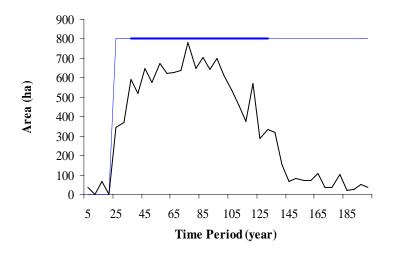



Figure 6-10. Conifer Priority clearcut of DUA strata (ha/year).

• product.Treated.CCDUCON

**54** •

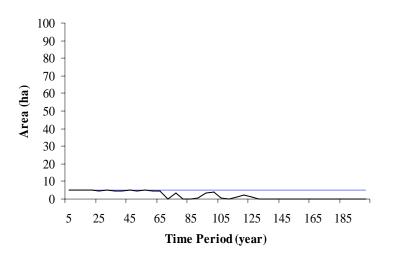
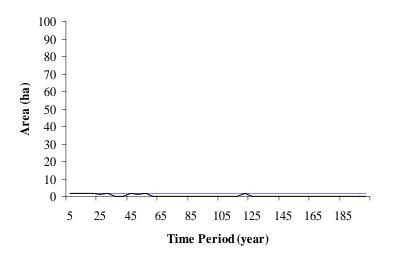
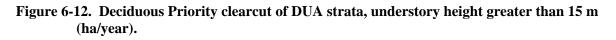





Figure 6-11. Deciduous Priority clearcut of DUA strata, understory height between 12 and 15 m (ha/year).

• product.Treated.CCDUDEC.DUA\_12\_15





• product.Treated.CCDUDEC.DUA\_16+

# 6.3.2 Understory Protection

In the final PFMS scenario, all understory protection harvest was manually turned off. This was due to the combination of difficulty in identifying appropriate candidate stands and the high operational costs. Understory protection may be undertaken on a site specific basis on the ground, but it was not modeled. Figure 6-13 outlines this strategy, where all periods show a zero area harvested.

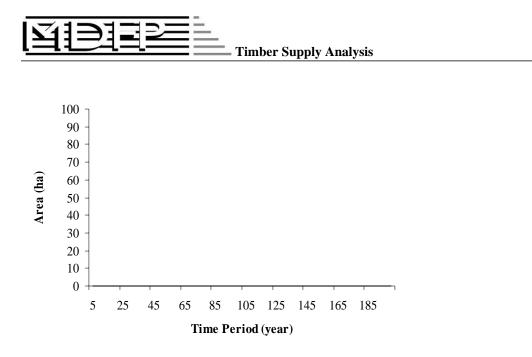



Figure 6-13. Understory Protection harvest area (ha/year).

• product.Treated.PROTECTION

# 6.4 Age Class

The age class structure is shown in Figure 6-14. It indicates a typical movement towards a regulated age class structure.

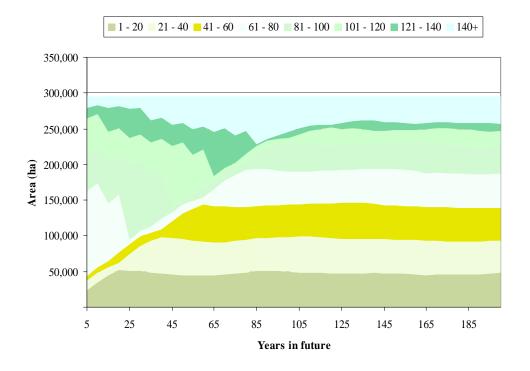



Figure 6-14. Active landbase age class structure.

May 31, 2007

# 6.5 Seral Stage

Since there were many other age based targets controlled in the model, the acceptable levels for Old and Mature seral stages were achieved without direct control in the model. Figure 6-15 shows the progression of seral stages on the active landbase over time.

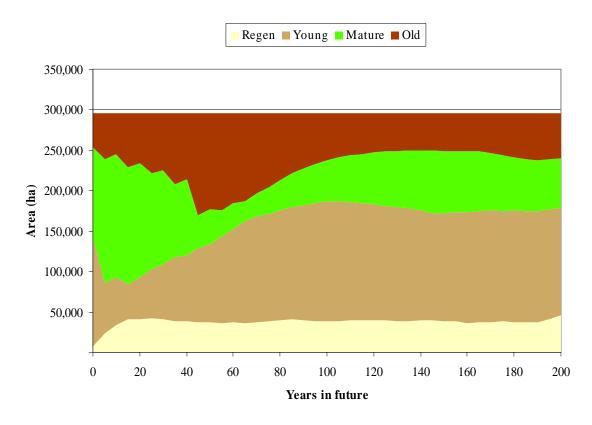
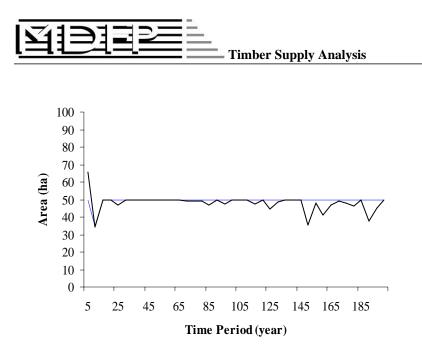
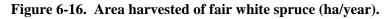





Figure 6-15. Active landbase seral stages.

# 6.6 White Spruce TPR F

An operational criteria to limit the area of Fair white spruce stands cut in each period was set to harvesting a maximum of 50 ha/year. This was to help the mill achieve a better piece size distribution.

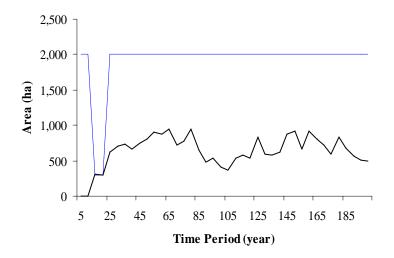


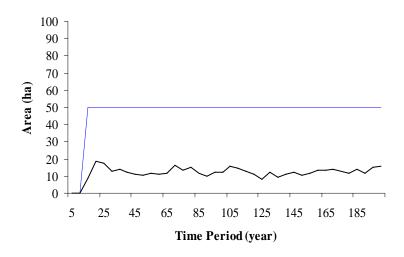


• product.FMPArea.mlb.SpS.4SWF

# 6.7 Conifer Flow from FMU P9

This target was created to aggregate operations in FMU P9 into areas that are consistent with annual wood requirements. This means that it is desirable to provide harvest areas in the SHS in multiples of the annual harvest area. As a result, the harvest area was set to a total of 3,000 ha (1,500 ha per year for two years) for the years 11-20 in P9. This will allow MDFP to harvest in P9 for two full years in the second decade of the SHS, which will minimize the number of entries into P9.





Figure 6-17. MDFP area harvested in P9.

• product.FMPArea.mlb.FMU.P9MDFP

May 31, 2007

# 6.8 PSP

MDFP's grid based PSP plots were buffered 100m and were excluded from harvest for the first 10 years. This harvest control was done by using a target and by using the Access Control table. The effect is summarized in Figure 6-18.



#### Figure 6-18. Area harvested within MDFP's PSP plots.

• product.FMPArea.mlb.PSP

# 6.9 Roads

The roading module built into Patchworks is not intended to generate a road network or a cost structure of building the roads. Instead, it is simply included to push the model towards grouping stands to allow more efficient harvesting. The only roading constraint used in the model is the maintenance cost, which is the cost incurred of using a road each year it is open. By minimizing the road cost in the first 20 years, the model trends towards grouping harvest blocks.

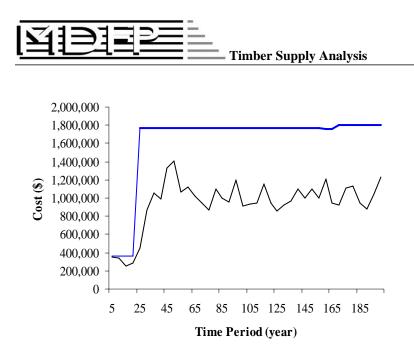



Figure 6-19. Road maintenance costs (\$/year).

• route.Conif.maintain

# 6.10 Operating Units

Operating units were assigned to the landbase to further group operations. Late in the TSA process, a methodology was developed to allow the model to pick which operating units would be open in any given period. These operational units are small contiguous areas within each compartment, further split by coniferous and deciduous landbase. The operating units were manually chosen in FMU P6 by selecting polygons in the TSA landbase that approximated the amount of area one operator could harvest in one year. The operating units for FMU P9 are simply the existing compartments. The operating units are shown in Figure 6-20.

Each operating unit was assigned a value of its total active landbase \* 1000. The model then tracked the area accessed in each period and attempted to minimize it. The target control restricts the model to only opening a certain area of active landbase but allows the model to choose which units with the constraints of the Access Control table (see Section 5.5).

Figure 6-21 shows the relative amount of operating units open in each period.

May 31, 2007



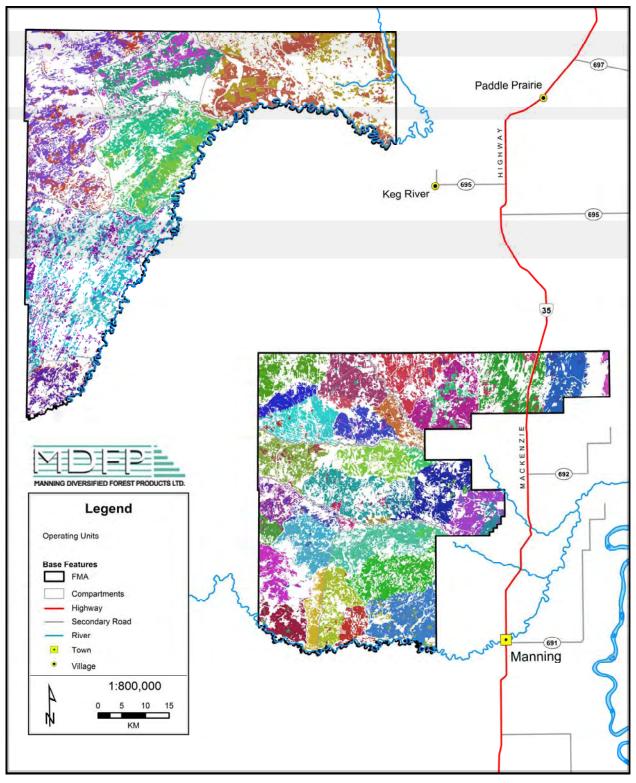



Figure 6-20. Operating units.

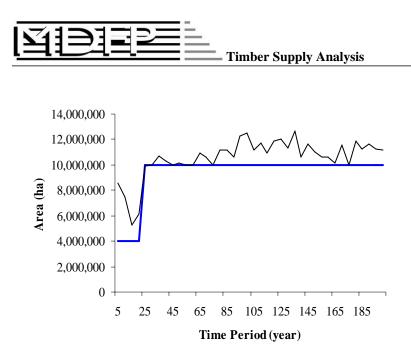



Figure 6-21. Area of operating units open in each period.

• Access.UnitsOpen.Conif

# **6.11 Tree Improvement Planting**

The model had the option to plant improved stock on recently harvested polygons which moves the stand to a slightly higher yield curve. When unconstrained, the model plants some of the stands, but the volume gain allowed for the enhanced curve is conservative, which limits the model's utilization of this option. To ensure the FMA derives the yield benefits expected from planting of improved stock, two targets were used to force the planting of improved stock in the first 30 years as shown in Figure 6-22 and Figure 6-23.

Even with targets in place, many stands that could have been planted with improved stock were not, because of access control limitations. An access control limitation is created because the planting action in the model takes place 5 years after the clearcut action. If the compartment is turned off the period following after harvest, the planting action is not allowed, since no actions are allowed when a compartment is turned off.

As a result, MDFP reserves the right to plant more improved stock than indicated in the model in the first 20 years, because of the extensive use of access control in the model during this period of time.

May 31, 2007

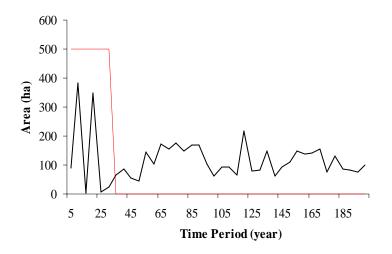
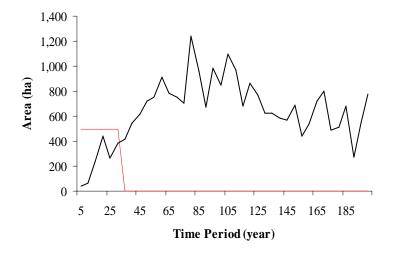
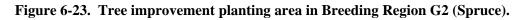





Figure 6-22. Tree improvement planting area in Breeding Region J (Pine).

• product.Treated.PLANTJ





• product.Treated.PLANTG

# 6.12 Conifer Trees per Cubic Metre (TPM)

Coniferous trees per metre was constrained in the PFMS to ensure appropriate piece size. Each strata in the coniferous landbase has a conifer TPM curve. This curve is then used to determine the average conifer TPM for all conifer volume harvested from the conifer landbase in each period.

The PFMS has the maximum average conifer TPM set at 2.2 for the first 10 years and then it rises to a maximum average of 2.6 for the remainder of the planning horizon.



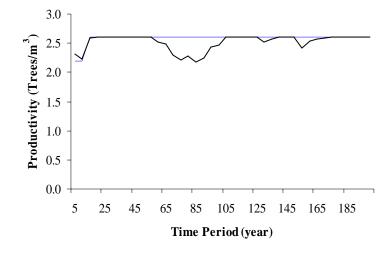



Figure 6-24. Conifer trees per cubic metre.

• product.Tpm.Avg.Conif

# 6.13 Mountain Pine Beetle

ASRD has issued a TSA related directive concerning mountain pine beetle, and the spirit of this directive has been implemented. Due to the small amount of pine in P16, the full analysis under the directive was not required.

The official strategy from Alberta regarding the current situation for Mountain Pine Beetle (MPB) is to harvest 75% of the operable Rank 1 and Rank 2 stands within the first 20 years. In the P16 landbase, the amount of merchantable stands that fall within the Rank 1 and Rank 2 status is a very small percentage of the overall active landbase. As such, MDFP's strategy is to cut all of the Rank 1 and Rank 2 stands that meet minimum operability guidelines (harvest age, piece size) and are available in the compartment sequence. This strategy had no effect on the harvest levels or any of the other major indicators, yet allowed MDFP to comply with the Provincial strategy.

Rank 1, 2 and 3 stands were identified on the landbase using SRD criteria. Stands with the pine component less than or equal to 20 % in the defining layer of the AVI were removed from the ranking. The defining layer (Section 4.2.4 in Landbase Netdown) is the overstory in most cases, but defers to the understory layer if the overstory layer is A density. This rule removed all of the D and DU strata from the ranking criteria.

The only potential impact to long-term AAC is the current amount of pine in FMU P9 that is below the operable age limit. An average of 180 ha/year is expected to be harvested from the P9 Rank 2 stands after the first 20 years. If the pine in these stands is killed before maturity, subsequent conifer AAC may be impacted.

Figure 6-25 through to Figure 6-28 show the harvest levels of the Rank 1 and Rank 2 stands in P6 and P9.

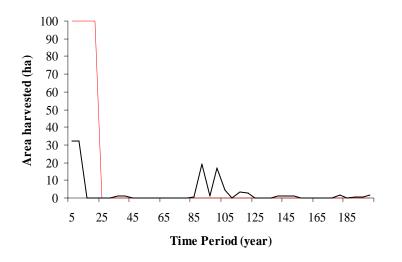
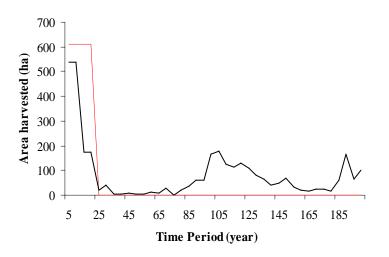




Figure 6-25. P6 Rank 1 area harvested.

• product.FMPArea.mlb.MPB.P6Rank1



#### Figure 6-26. P6 Rank 2 area harvested.

• product.FMPArea.mlb.MPB.P6Rank2

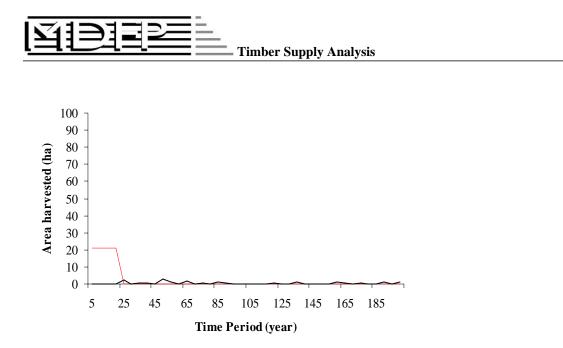



Figure 6-27. P9 Rank 1 area harvested.

• product.FMPArea.mlb.MPB.P9Rank1

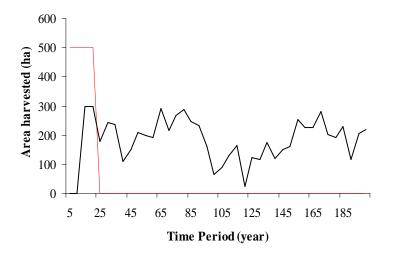
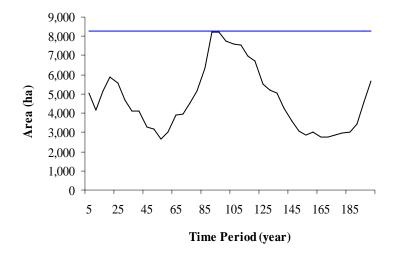
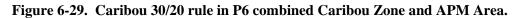



Figure 6-28. P9 Rank 2 area harvested.

• product.FMPArea.mlb.MPB.P9Rank2

# 6.14 Caribou 30/20 Rule


Within the Caribou Zone and the Alternative Patch Management Area (APMA), the 30/20 rule was applied to help reduce the habitat for ungulates other than caribou in an effort to reduce the predator population. Other ungulate habitat includes all deciduous and mixedwood strata (D, DU, DC, DCU, CD or CDU strata) that is less than 30 years old.


May 31, 2007

May 31, 2007

The target in each FMU was set so that the area less than 30 years old of the deciduous and mixedwood strata was no more than 20% of the total stratum area. These targets did not excessively constrain the model, and sensitivity analysis showed minimal changes to the outputs when they were turned off.

Figure 6-29 and Figure 6-30 show the 20% targets and the actual area within the deciduous and mixedwood strata in P6 and P9.





• feature.FMPArea.mlb.under30yrs.P6

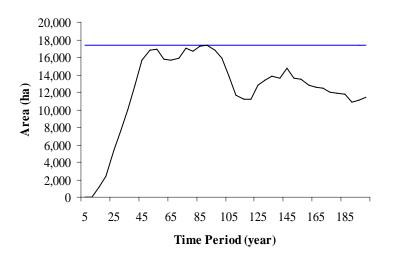
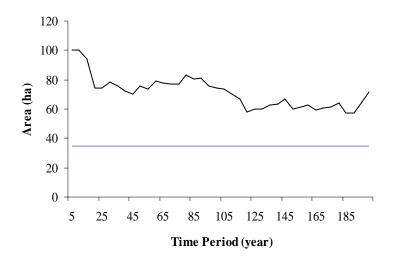
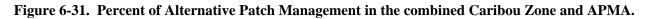



Figure 6-30. Caribou 30/20 rule in P9 combined Caribou Zone and APM Area.


• feature.FMPArea.mlb.under30yrs.P9




## 6.15 Alternative Patch Management Patches

Within the combined Caribou Zone and APMA, the stands included in or addressed by the 30/20 rule were also controlled spatially. Patch sizes greater than 300 ha were maximized to increase the grouping of blocks within the Caribou Zone and the APMA.

The target weighting for the patch size was set so as to reduce the number of patches in the 0-300 ha range, not to eliminate them. Throughout the planning horizon, the patch target was effective in increasing the average patch size when compared to areas outside of the APM Area. Figure 6-31 shows the reduction in percent of area that is in patches less than 300 ha.





• patch.Caribou.mlb.under30yrs.P16.0-300.size

# 6.16 Disturbance Patches

Disturbance patches are used to describe the patch sizes of any part of the active landbase that is less than 20 years old, regardless of strata. The patches are further broken down into size ranges of 0-7 ha, 8-60 ha, 61-200 ha and 201+ ha. The only patch size constraint used in the model is to maximize the number of harvest blocks that make up 60 to 200 ha patches, using a 15 m topology distance. The TSA landbase does not include the linework from the seismic layer, as thus the topology distance was chosen to not cross permanent roads or water course buffers, but to allow the model to cross other small features with the landbase.

The goal is set to achieve 75% of the total area less than 20 years old to fall within the 61-200 ha patch size. Figure 6-32 shows the 61-200 ha patch size class as a percentage of the total active landbase less than 20 years old, while Figure 6-33 shows the total area in each size class.

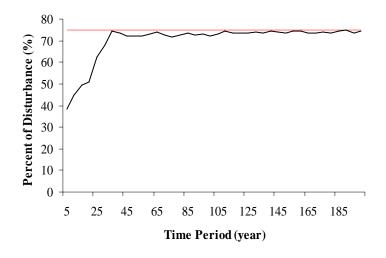



Figure 6-32. Percent of Disturbance patches in size class 60-200 ha.

• patch.Disturbed.mlb.60\_200.size

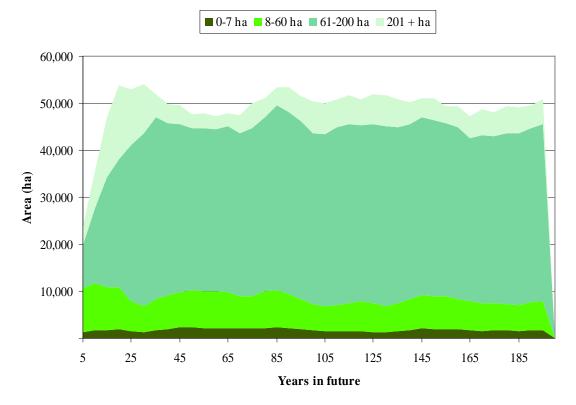
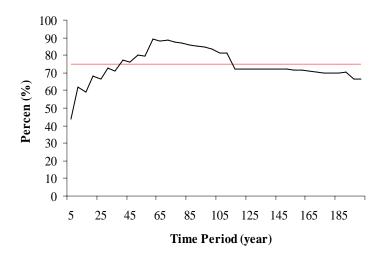



Figure 6-33. Disturbance patches in all size classes.




# 6.17 Old Interior Forest Patches

The Old Interior forest patch target strives to increase the number of patches greater than 120 ha that are composed of stands greater than 120 years old regardless of strata. It is applied to the gross landbase (active and passive). The goal is to maintain 75% of the total area greater than 120 years old in patches larger than 120 ha as a proxy to the true 100 ha required in Objective 1.1.1.2.

Initially there was some concern that this target would conflict with the Caribou Zone and APMA patch target. Fortunately, this target actually compliments the Caribou Zone and APMA patch target, as larger blocks contribute to larger old patches in the future.

Figure 6-34 shows the percent of Old Interior forest patches greater than 120 ha and Figure 6-35 shows the area in each patch size class.



#### Figure 6-34. Percent of Old Interior forest patch size greater than 120 ha.

• patch.Interior.glb.Old.120+.size

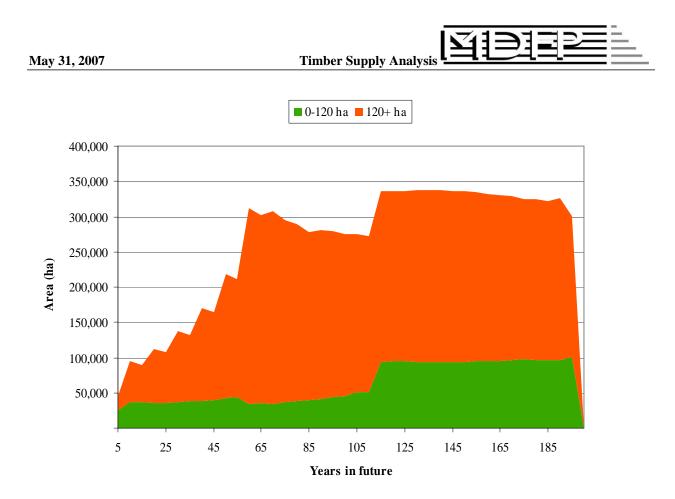



Figure 6-35. Old Interior forest patch size distribution.

# 6.18 FireSmart Patches

The FireSmart patch target was included in the TSA to reduce the number of patches greater than 1000 ha within the FMA area. The goal selected by the Core Planning Team is to reduce the area in FireSmart patches larger than 1000 ha to 35% of the total FireSmart area. A FireSmart patch is composed of all 'c' FBP types together.

There was some concern that the desire to reduce these patch sizes might not be feasible given the emphasis for larger blocks within the Caribou Zone and APMA, but this was not the case. The strata used in the FireSmart patches are primarily conifer, along with the conifer dominated mixedwoods, while the patches in the Caribou Zone and APMA were deciduous and mixedwood stratum. As a result, there was very little overlap in the patches that were being controlled by the two different patch targets.

The goal of the FireSmart patch target is to reduce the number of patches greater than 1000 ha, while the goal of the Caribou Zone and APMA patches is to maximize the number of patches greater than 300 ha. As a result, there is a significant amount of flexibility between the two size targets.

Figure 6-36 shows the percent of FireSmart patches greater than 1000 ha and Figure 6-37 shows the area in each patch size class.

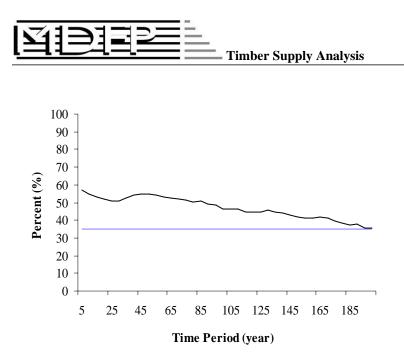



Figure 6-36. Percent of FireSmart patches greater than 1000 ha.

• patch.FireSmart.glb.c.1000+.size

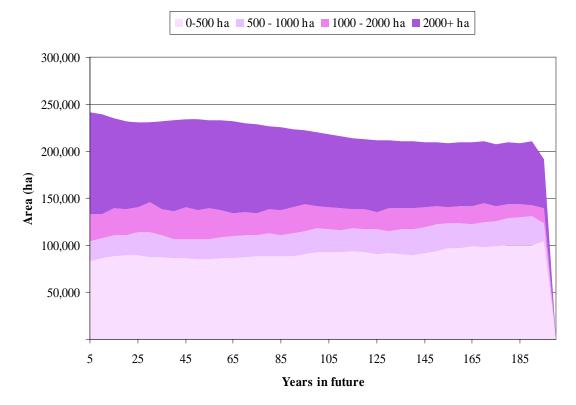



Figure 6-37. FireSmart patch size classes.

May 31, 2007

# 6.19 FireSmart Analysis

Annex 3 of the ASRD Forest Management Planning Standard describes the four-step process for FireSmart reporting requirements. These requirements are summarized as follows:

- 1. Using the most current regional wildfire threat assessment model, complete an assessment of the FMA area.
- 2. Create new Fire Behavior Potential (FBP) fuel grid layers that incorporate all SHS blocks for 0, 10, 20 and 50 years.
- 3. Create the forecasted fire behavior potential grid layers based on the FBP fuel layers created in Step 2. These new layers are the HFI grid layer, the CroSuM grid layer and the Fire Behavior Potential grid layer.
- 4. Examine the changes to fire behavior potential from the proposed SHS and modify if required.

MDFP has completed steps 1 through 4 and have provided these on the data DVD. Maps of the FireSmart analysis are in Section2 of **VOITS**.

# **6.20** Watershed Analysis

A watershed analysis was done by Watertight Consulting, on a selected set of watersheds using the WRENS watershed model. The watersheds chosen for the analysis are watersheds that represent the harvest activity in the first 20 years. The selected set of watersheds are shown in Figure 6-38. Unfortunately, due to the length of time it takes to perform the watershed analysis and the complexities in choosing the PFMS, the watershed analysis was not performed on the final PFMS, but on scenario P16\_P7001. In Dr. Rothwell's professional opinion, the changes in the SHS between scenario P16\_P7001 and the PFMS scenario did not warrant re-running the watershed analysis.

Standard 5.9.13 of the Alberta Forest Management Planning Standard, version 4.1 outlines the requirements for watershed analysis as the following:

The impacts on water yield must be predicted. Watershed modeling and analysis will determine an acceptable target for water yield increase following harvesting for third order watercourses. The ToR will describe the models to be used and assessments to be completed.

To comply with the standard, the watercourses that were analyzed are broken down by order. Along with the third order watersheds, several second order and fourth order watersheds were also analyzed. The predicted water yield for the watersheds is shown in Table 6-4. The total watershed area analyzed is  $2,495 \text{ km}^2$ , and of that  $243 \text{ km}^2$  (9.7%) exceeded the upper 95% confidence interval for average water yield.

Several of the second and third order watersheds had yield increases that exceed the 95% confidence interval. These were generally a result of either the caribou strategy (where operations were concentrated temporally) or the pine beetle strategy. In some cases it was simply a reflection of operating in a watershed that is extremely small (i.e., relatively few blocks represent a large portion of the watershed). However, the Core Team realizes that the TSA process requires compromises and changing the PFMS to remove the impact on the watersheds would require many modifications to the whole SHS strategy.

|               |           |                         | Area Harvested | Yield Increase | Maximum Increase in Annual |
|---------------|-----------|-------------------------|----------------|----------------|----------------------------|
| Basin Order   | Watershed | Area (Km <sup>2</sup> ) | (%)            | ( <b>mm</b> )  | Water Yield (%)            |
| P9 Watersheds |           |                         |                |                |                            |
| 4th           | 5         | 571.6                   | 3.3            | 4.1            | 4.5                        |
| 3rd           | 3_1       | 166.4                   | 9.3            | 9.1            | 9.9                        |
|               | 5_2       | 22.2                    | 31.3           | 46.9           | 51.2                       |
| 2nd           | 5_1       | 19.9                    | 15.1           | 19.3           | 21                         |
| P6 Watersheds |           |                         |                |                |                            |
| 4th           | 16        | 720                     | 17.3           | 15.1           | 15.8                       |
|               | 23-2      | 197.5                   | 15.8           | 14.8           | 15.5                       |
| 3rd           | 22-1      | 301.6                   | 11.7           | 9.5            | 10                         |
|               | 13_1      | 231.4                   | 11.6           | 10.6           | 11.1                       |
|               | 16_1      | 65                      | 29.8           | 34.5           | 36                         |
|               | 20-1      | 59.2                    | 26.9           | 26.1           | 27.3                       |
|               | 12_2      | 42.4                    | 19.5           | 28.2           | 29.5                       |
|               | 16-2      | 36.5                    | 28.2           | 25.8           | 27                         |
| 2nd           | 12_1      | 43.6                    | 17.6           | 13.9           | 14.5                       |
|               | 23-1      | 18.4                    | 45.5           | 53.1           | 55.5                       |

#### Table 6-4. Watershed Water Yield Predictions for Scenario P16\_P7001.

Bolded numbers indicate water yield exceeds upper 95% confidence interval.

Timber Supply Analysis

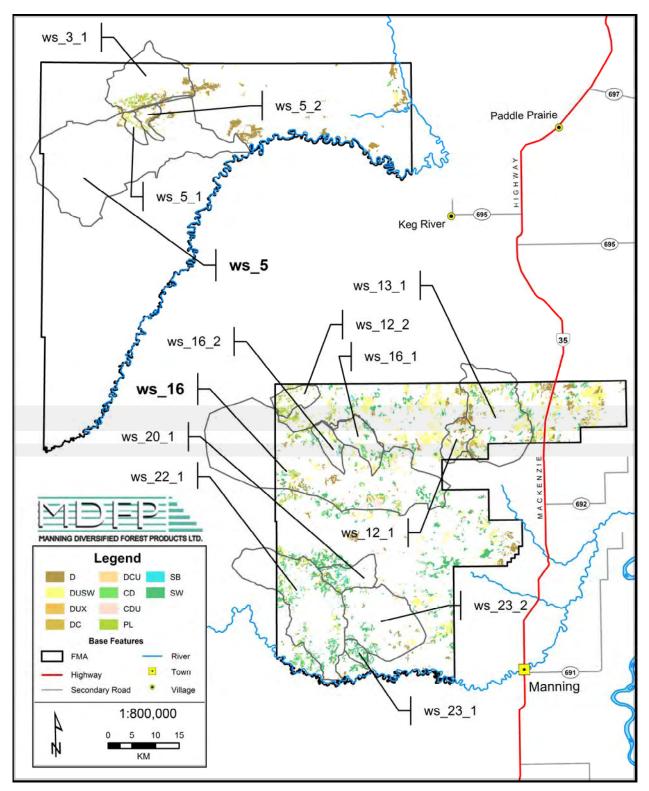



Figure 6-38. Watersheds chosen for analysis with 20 year SHS.



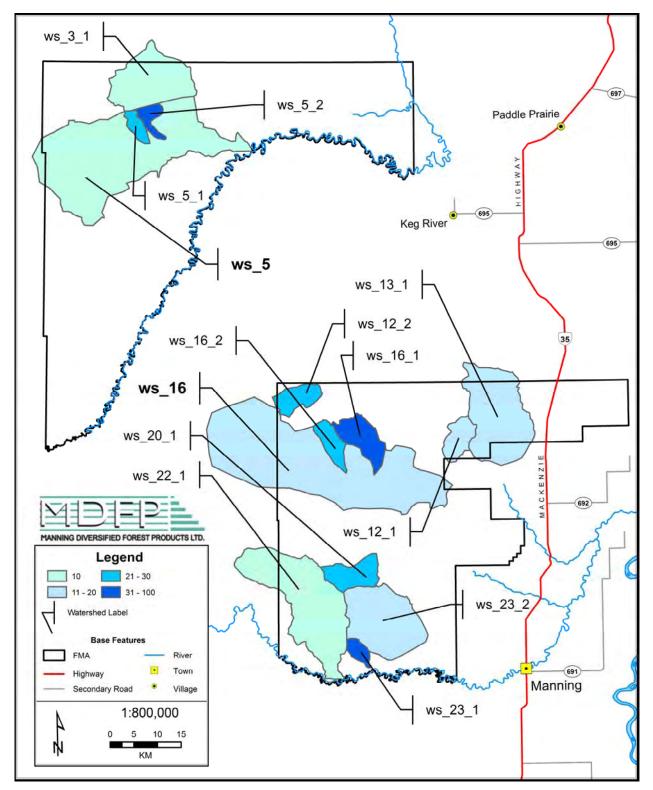



Figure 6-39. Watersheds and Percent Water Yield Increase.

# 7. AAC Recommendations

# 7.1 Recommended AAC

The Core Planning Team selected a PFMS which resulted in the following AAC recommendation for FMU P16 for the 2007-2017 FMP. Table 7-1 lists the harvest level from the PFMS for FMU P16 for the 2007-2017 FMP, as well as the current approved AAC. The effective date for this harvest level is May 1, 2007.

Table 7-1. Recommended P16 AAC.

|                           | Conifero | us Harvest Vol | ume     | Deciduous Harvest Volume |           |         |  |
|---------------------------|----------|----------------|---------|--------------------------|-----------|---------|--|
|                           | (m³/yr)  |                |         | (m <sup>3</sup> /yr)     |           |         |  |
| Volume Source             | Primary  | Secondary      | Total   | Primary                  | Secondary | Total   |  |
|                           | Evenflow | 20yr avg.      |         | Evenflow                 | 20yr avg. |         |  |
| PFMS (Scenario P16_P9003) | 301,817  | 12,736         | 314,553 | 73,619                   | 179,298   | 252,917 |  |
| Current Approved AAC      | 196,897  | 14,404         | 211,301 | 129,849                  | 42,692    | 172,541 |  |

# 7.2 Recommended Allocation

Annex 1, Section 5.12 of the Planning Standard requires the specification of AAC Allocation by Company. The historic allocation is presented in Table 7-2 and the recommended allocation, based on the PFMS, is presented in Table 7-3.

| Coniferous Harvest Volume<br>(m³/yr) |                     |         | Deciduous Harvest Volume<br>(m³/yr) |        |         |                     |         |                        |        |         |
|--------------------------------------|---------------------|---------|-------------------------------------|--------|---------|---------------------|---------|------------------------|--------|---------|
| Allocation                           | Primary<br>Evenflow |         | Secondary 20yr<br>avg.              |        | Total   | Primary<br>Evenflow |         | Secondary 20yr<br>avg. |        | Total   |
|                                      | %                   | m3      | %                                   | m3     | m3      | %                   | m3      | %                      | m3     | m3      |
| MDFP                                 | 100%                | 196,897 | 100%                                | 14,404 | 211,301 | 0%                  | 0       | 0%                     | 0      | 0       |
| DMI                                  | 0%                  | 0       | 0%                                  | 0      | 0       | 100%                | 129,849 | 100%                   | 42,692 | 172,541 |

#### Table 7-2. Historic P16 AAC Allocation.

#### Table 7-3. Recommended P16 AAC Allocation.

| Coniferous Harvest Volume<br>(m³/yr) |      |                |      | Deciduous Harvest Volume<br>(m³/yr) |         |      |               |     |                 |         |
|--------------------------------------|------|----------------|------|-------------------------------------|---------|------|---------------|-----|-----------------|---------|
| Allocation                           |      | mary<br>enflow |      | ary 20yr<br>vg.                     | Total   |      | mary<br>nflow |     | ary 20yr<br>vg. | Total   |
|                                      | %    | m3             | %    | m3                                  | m3      | %    | m3            | %   | m3              | m3      |
| MDFP                                 | 100% | 301,817        | 100% | 12,736                              | 314,553 | 0%   | 0             | 0%  | 0               | 0       |
| DMI                                  | 0%   | 0              | 0%   | 0                                   | 0       | 100% | 73,619        | 55% | 98,922          | 172,541 |
| Unallocated                          | 0%   | 0              | 0%   | 0                                   | 0       | 0%   | 0             | 45% | 80,376          | 80,376  |

# 7.3 Changes from Current Approved AAC

When compared to the current approved AAC, the recommended AAC is significantly different. This is due to a new AVI inventory, new yield curves based on new plot data, and a timber supply that considers caribou, mountain pine beetle, spatial harvest patterns and other considerations as outlined in this FMP.

The current AAC was assigned by SRD upon completion of a non-spatial analysis using Phase III inventory. As shown in Table 7-4, the landbase changed when the AVI inventory was completed. The new inventory resulted in more coniferous stratum and a corresponding drop in the pure D strata. This directly results in a smaller deciduous landbase and a larger conifer landbase. Furthermore, since the majority of the deciduous landbase loss occurred in FMU P6, the proportion of deciduous landbase that is currently younger than the minimum operability age dramatically increased, resulting in a wood flow issue in the first 10 years of the SHS (as shown in the deciduous growing stock in section 6.2).

|        |           | Managed 1 | Landbase     |          |
|--------|-----------|-----------|--------------|----------|
| Strata | Phase III | AVI       | Decrease (In | ncrease) |
|        | ha        | ha        | ha           | %        |
| P6     |           |           |              |          |
| D      | 18,570    | 11,872    | 6,698        | 36%      |
| DU     | 77,854    | 74,941    | 2,913        | 4%       |
| DC     | 11,365    | 13,064    | (1,699)      | -15%     |
| CD     | 19,732    | 14,197    | 5,534        | 28%      |
| SW/PL  | 38,565    | 54,168    | (15,603)     | -40%     |
| SB     | 5,641     | 2,414     | 3,228        | 57%      |
| Total  | 171,727   | 170,657   | 1,071        | 1%       |
| P9     |           |           |              |          |
| D      | 60,118    | 59,880    | 238          | 0%       |
| DU     | 28,514    | 23,949    | 4,565        | 16%      |
| DC     | 7,108     | 6,949     | 159          | 2%       |
| CD     | 4,239     | 4,329     | (90)         | -2%      |
| SW/PL  | 25,240    | 27,681    | (2,441)      | -10%     |
| SB     | 5,261     | 1,847     | 3,415        | 65%      |
| Total  | 130,481   | 124,634   | 5,847        | 4%       |
| P16    |           |           |              |          |
| D      | 78,689    | 71,753    | 6,936        | 9%       |
| DU     | 106,368   | 98,890    | 7,478        | 7%       |
| DC     | 18,473    | 20,013    | (1,540)      | -8%      |
| CD     | 23,971    | 18,526    | 5,444        | 23%      |
| SW/PL  | 63,805    | 81,849    | (18,044)     | -28%     |
| SB     | 10,903    | 4,260     | 6,643        | 61%      |
| Total  | 302,208   | 295,291   | 6,917        | 2%       |

#### Table 7-4. Comparison of Phase III landbase to AVI landbase.

# 8. Issue Resolution

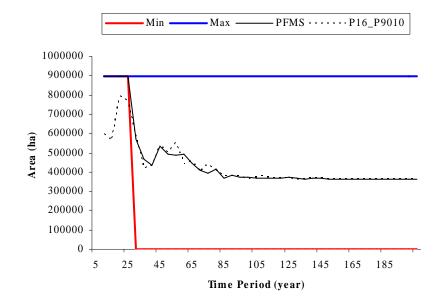
This section outlines several of the issues that were resolved during the PFMS selection. These "Issue Statements" are formatted as stand-alone documents, and as such they may present redundant information that is also presented elsewhere in this document.

# **8.1 DUA Harvest Levels**

## 8.1.1.1 Question

What is the impact on the conifer AAC when the proportion of deciduous priority DUA harvest increases?

## 8.1.1.2 Background


The DUA strata is a large component of the landbase in P16 and contains significant coniferous and deciduous volume. Both MDFP and DMI are reliant on the volume in the strata, while MDFP holds legal rights to the landbase. Through verbal agreements, the two companies have agreed to share the resource, allowing DMI to harvest up to 50% of the DUA strata using deciduous priority clearcut. As the conifer component in the DUA strata contributes to the coniferous AAC, the impact of the agreement has the potential to be a very contentious issue.

## 8.1.1.3 Results

When compared to the PFMS, Scenario #P16\_P9010 is the exact same except that the deciduous priority harvest level is unconstrained. Table 8-1 shows the change of AAC level.

| Table 8-1. | Comparison of PFMS scenario to P16_P9010. |  |
|------------|-------------------------------------------|--|
|------------|-------------------------------------------|--|

|            | Conifer Harvest Volume<br>(m³/yr) |                        |                     | arvest Volume<br>³/yr) | Deciduous Secondary<br>20yr avg. Volume<br>Source (m³/yr) |        |
|------------|-----------------------------------|------------------------|---------------------|------------------------|-----------------------------------------------------------|--------|
|            | Primary<br>Evenflow               | Secondary<br>20yr avg. | Primary<br>Evenflow | Secondary<br>20yr avg. | DUA                                                       | Other  |
| PFMS       | 301,817                           | 12,736                 | 73,619              | 179,298                | 106,457                                                   | 72,841 |
| P16_P9010  | 305,756                           | 12,605                 | 72,308              | 145,762                | 63,620                                                    | 82,142 |
| Difference | -3,939                            | 131                    | 1,311               | 33,535                 | 42,837                                                    | -9,301 |



#### Figure 8-1. Comparison of Deciduous harvest volume from D and DUA strata (m3/year).

• product.FMPVol.mlb.VolSum.Decid.DMI

#### 8.1.1.4 Discussion

There is a small negative impact on the conifer even-flow harvest levels when the DUA area harvested by deciduous priority approaches 50%, however, MDFP agreed to allow DMI to harvest up to 50% of the DUA stratum.

Timber Supply Analysis

# **8.2** Caribou Habitat Controls

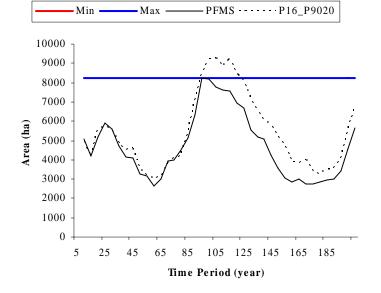
## 8.2.1.1 Question

What is the impact on AAC levels resulting from using the caribou habitat controls?

## 8.2.1.2 Background

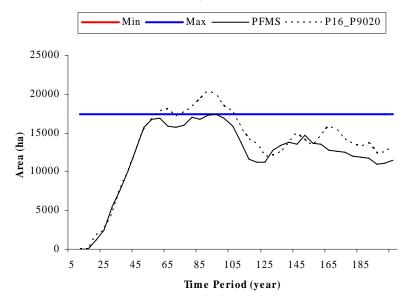
Several controls have been added to the model to enhance the caribou habitat in P16 within the Caribou Zone and APMA. The main controls are:

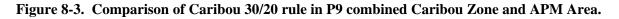
- 30/20 rule In the deciduous and mixedwood stratum, a maximum of 20% is allowed to be under 30 years old.
- Patch target A patch target that tended towards patches (under 30 years old) larger than 300 ha.


## 8.2.1.3 Results

Scenario P16\_P9020 was based on the PFMS but with the caribou targets turned off. The removal of these targets had little impact on the harvest levels when compared to the PFMS scenario as shown in Table 8-2, but allowed the model to violate the 30/20 rule and also allow smaller patches within the Caribou Zone and APMA (Figure 8-2, Figure 8-3 and Figure 8-4).

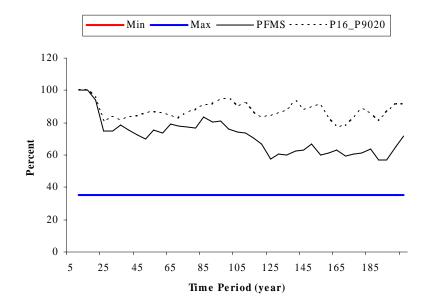
#### Table 8-2. Comparison of PFMS scenario to P16\_P9020.


|            | Conifer Harvest Volume<br>(m³/yr) |                   |                     | Harvest Volume<br>n³/yr) | Deciduous Secondary<br>20yr avg. Volume Source<br>(m³/yr) |        |
|------------|-----------------------------------|-------------------|---------------------|--------------------------|-----------------------------------------------------------|--------|
|            | Primary<br>Evenflow               | Secondary 20      | Primary<br>Evenflow | Secondary 20             | DUA                                                       | Other  |
| PFMS       | 301.817                           | yr avg.<br>12.736 | 73.619              | yr avg.<br>179.298       | 106.457                                                   | 72,841 |
| P16_P9020  | 302,070                           | 12,556            | 72,269              | 179,958                  | 107,218                                                   | 72,739 |
| Difference | -253                              | 180               | 1,350               | -660                     | -761                                                      | 101    |






#### Figure 8-2. Comparison of Caribou 30/20 rule in P6 combined Caribou Zone and APM Area.


• feature.FMPArea.mlb.under30yrs.P6





• feature.FMPArea.mlb.under30yrs.P9





# Figure 8-4. Comparison of Percent of Alternative Patch Management in the combined Caribou Zone and APM Area.

• patch.Caribou.mlb.under30yrs.P16.0-300.size

#### 8.2.1.4 Discussion

There was no significant impact on the harvest levels with the implementation of the Caribou constraints. The Core Team agreed to include the caribou constraints in the model to address the importance of caribou habitat in the Caribou Zone and APMA.



## **8.3 Mountain Pine Beetle**

## 8.3.1.1 Question

What is the impact of imposing Mountain Pine Beetle constraints?

## 8.3.1.2 Background

The official strategy from Alberta regarding the current situation for Mountain Pine Beetle (MPB) is to harvest 75% of the operable Rank 1 and Rank 2 stands within the first 20 years. In the P16 landbase, the amount of merchantable stands that fall within the Rank 1 and Rank 2 status is a very small percentage of the overall active landbase. As such, MDFP's strategy is to cut all of the Rank 1 and Rank 2 stands that fall within their normal course of operations and compartment sequencing.

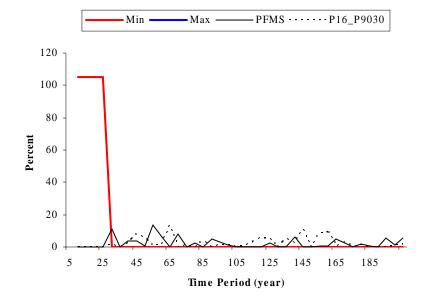
## 8.3.1.3 Results

Scenario P16\_P9030 is based on the PFMS but without using the pine beetle targets. The removal of these targets has little impact on the over AAC levels as shown in Table 8-3. The harvest levels in each of the targets is shown in Figure 8-5, Figure 8-6, Figure 8-7 and Figure 8-8.

| <b>Table 8-3.</b> | Comparison | of PFMS s | scenario to P16 | <b>_P9030.</b> |
|-------------------|------------|-----------|-----------------|----------------|
|-------------------|------------|-----------|-----------------|----------------|

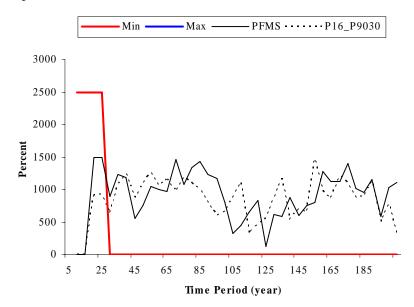
|            | Conifer Harvest Volume<br>(m³/yr) |                         |                     | ous Harvest<br>ne (m³/yr) | Deciduous Secondary<br>20yr avg. Volume Source<br>(m³/yr) |        |
|------------|-----------------------------------|-------------------------|---------------------|---------------------------|-----------------------------------------------------------|--------|
|            | Primary<br>Evenflow               | Secondary 20<br>yr avg. | Primary<br>Evenflow | Secondary 20<br>yr avg.   | DUA                                                       | Other  |
| PFMS       | 301,817                           | 12,736                  | 73,619              | 179,298                   | 106,457                                                   | 72,841 |
| P16_P9030  | 301,747                           | 12,585                  | 72,250              | 185,201                   | 107,187                                                   | 78,013 |
| Difference | 70                                | 151                     | 1,369               | -5,903                    | -730                                                      | -5,172 |





Figure 8-5. Comparison of P6 Rank1 area harvested.

- Min Max - PFMS ----- P16\_P9030 3500 3000 2500 **Area** (ha) 1200 (ha) 1000 500 0 125 5 25 45 65 85 105 145 165 185 Time Period (year)
- product.FMPArea.mlb.MPB.P6Rank1

Figure 8-6. Comparison of P6 Rank2 area harvested.


• product.FMPArea.mlb.MPB.P6Rank2





#### Figure 8-7. Comparison of P9 Rank1 area harvested.

• product.FMPArea.mlb.MPB.P9Rank1



#### Figure 8-8. Comparison of P9 Rank2 area harvested.

• product.FMPArea.mlb.MPB.P9Rank2

## 8.3.1.4 Discussion

The amount of MPB susceptible pine in the FMA is small (< 8% of active landbase) and is in fairly concentrated groups. Because of this, re-aligning the SHS to capture MPB susceptible stands in the first 20 years had an insignificant impact on all harvest levels.

# 9. References

Boston, K. and Bettinger, P. 1999. An Analysis of Monte Carlo Integer Programming, Simulated Annealing, and Tabu Search Heuristics for Solving Spatial Harvest Scheduling Problems. For. Sci. 45(2): 292-301.

Davis, Johnson, Howard and Bettinger. 2001. Forest Management to Sustain Ecological, Economic and Social Values, Fourth Edition. McGraw-Hill Companies Inc. New York, NY.

Lockwood, C. and Moore, T. 1993. Harvest scheduling with spatial constraints: a simulated annealing approach. Can J. For. Res. 23: 468-478.



# Appendix I Model Round Changes

Through the course of developing the final timber supply model, several rounds of Patchworks models was implemented. The major changes that required a new round of models is listed below.

# I.I. Round1 – Initial Patchworks model.

Woodstock\_model\_v5.xls

# I.II. Round2

Woodstock\_model\_v6.xls Added the road component,

Added control over alternative patch management zone, Added control over management zones and working circles.

# I.III. Round3

Woodstock\_model\_v7.xls Implemented Transition\_matrix\_2006\_02\_21, Added tree improvement actions, Added deciduous and conifer priority actions for DU A density Understory Stands, Added FireSmart yield curves and patching targets, Added caribou 30-20 rule, Updated yield curves to set as submitted in July, 2006, Updated landbase to Version4 as submitted in July, 2006.

# I.IV. Round4

Woodstock\_model\_v10.xls Increased DU BCD density understory minimum harvest age from 80 to 110 years old as a result of field checking preliminary SHS.

# I.V. Round5

Woodstock\_model\_v11.xls

Reduced deciduous landbase curves by 4% to allow for structural retention.

Implemented Transition\_matrix\_2006\_10\_20 – only change is DU A density understory stands now all transition to DC strata,

Revised FireSmart yield curves,

Added mountain pine beetle ranking system, allows control and reporting,

Added second topology file (120m proximal distance instead of 15m) to allow reporting for VOIT, Added split between conifer and deciduous landbases for access control.

# I.VI. Round 6

Woodstock\_model\_v11.xls

Added targets to allow for accounting of DMI harvest of DU A density stands,



Added target to allow control of harvesting of SW fair stands (capped at 50ha / year), Added operational units to force the model to group operations even more.

# I.VII. Round 7

Woodstock\_model\_v12.xls

Removed the 4% structural retention reduction from deciduous landbase curves, (SRD does not allow this).

# I.VIII. Round 8

Woodstock\_model\_v13.xls

Fixed major error in accounting of DU stands. Previous rounds included the DU BCD density in the deciduous priority, when they are actually part of the conifer priority.

# I.IX. Round 9

Woodstock\_model\_v13.xls Fixed duplicated road segments in operating units functionality. Added targets for P6 and P9 MDFP conifer harvest area. Added more polygon level control on the conifer harvest in the preblock schedule.

# Appendix II Additional Patchworks Scenarios



| TSA Scenar |                                                                                                     | Reference | D 4770 - 7                                                                                                                                       | <b>N</b>                                                                                                                      |
|------------|-----------------------------------------------------------------------------------------------------|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Number     | Name                                                                                                | Scenario  | Purpose of TSA Scenario                                                                                                                          | Result                                                                                                                        |
| P16_P3000  | No Harvest                                                                                          |           | What is the result of not Harvesting?                                                                                                            | Large increase in Old Interior Forest and older age classes                                                                   |
| P16_P3001  | Base line compartment run                                                                           | P16_P3000 | What is the initial harvest level given certain compartment constraints?                                                                         | Initial baseline run                                                                                                          |
| P16_P3002  | Turn off south P9                                                                                   | P16_P3001 | What is the revised harvest level if south P9 is turned off?                                                                                     | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P3003  | Fix pre-blocks in caribou zone                                                                      | P16_P3002 | What happens when the pre-blocks in the caribou zone are not forced on?                                                                          | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P3004  | Piece size max 2.2 for 10 years, 2.6 for rest                                                       | P16_P3003 | What happens when piece size is<br>restricted to 2.2 for ten years and 2.6 for<br>the remaining horizon?                                         | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P3006  | Piece size same as 3004 and turned off<br>Understory protection and Deciduous<br>priority clearcut. | P16_P3004 | What happens when deciduous priority<br>harvest of Du-A density stands is<br>removed?                                                            | Significant impact on conifer primary harvest<br>volume (18% decline) and deciduous secondary<br>harvest volume (52% decline) |
| P16_P3007  | P9 harvest off for 20 years                                                                         | P16_P3003 | What happens when P9 harvest is turned off for 20 years?                                                                                         | Significant change to deciduous primary harvest volume (43% decline) and conifer secondary harvest volume (41% decline)       |
| P16_P3008  | P9 harvest off for 10 years                                                                         | P16_P3003 | What happens when P9 harvest is turned off for 10 years?                                                                                         | Small change to deciduous primary harvest<br>volume (10% decline) and conifer secondary<br>harvest volume (5% decline)        |
| P16_P3009  | Turn off understory Protection                                                                      | P16_P3004 | What happens when only understory protection is turned off?                                                                                      | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P4001  | DU BCD min harvest age increased<br>from 80 to 110 years                                            | P16_P3006 | What happens when we increase the min<br>harvest age of DU BCD density stands?<br>(Understory protection and Deciduous<br>priority are also off) | No effect on harvest levels and other key indicators                                                                          |
| P16_P4002  | Test understory protection when DU<br>Decid priority is not allowed                                 | P16_P4001 | What happens when understory protection<br>is allowed but deciduous priority is not<br>allowed?                                                  | Small effect on harvest levels and other key indicators                                                                       |
| P16_P4003  | Add in more pre-blocks and deferals                                                                 | P16_P4001 | What happens when certain stands are locked down or deferred?                                                                                    | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P4006  | First MPB Beetle run - remove 50% pine in 5 years                                                   | P16_P4003 | What happens when we force 50% of<br>operable pine strata to be harvested in the<br>first 5 years? (also now allowing<br>deciduous priority)     | Minimal effect on harvest levels and other key                                                                                |
| P16_P4007  | Second MPB Beetle run - remove 75% pine<br>in 20 years                                              | P16_P4003 | What happens when we force 75% of<br>operable pine strata to be harvested in the<br>first 20 years? (also now allowing<br>deciduous priority)    | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P5000  | Baseline round 5 run - no access control                                                            | P16_P4003 | What is the maximum harvest volume without access control?                                                                                       | New Baseline shows 8,000m3 harvest level increase for Primary deciduous if no access conto                                    |
| P16_P5001  | P6 Rank1 and Rank2 stands targeted                                                                  | P16_P5005 | What is the effect of changing from Round 4 to Round 5 and targeting Rank1 and 2 stands in P6?                                                   | Some increase in Conifer Primary volume,<br>primarily due to shorter rotation of access (10<br>years insead of 20 years)      |
| P16_P5002  | P6 and P9 Rank1 and Rank2 stands targeted                                                           | P16_P5001 | What is the effect of targeting Rank1 and 2 stands in P6 and P9?                                                                                 | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P5003  | Force tree improvement planting                                                                     | P16_P5002 |                                                                                                                                                  | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P5004  | Baseline round 5 run - with access control                                                          | P16_P4003 | What is the effect of changing from Round 4 to Round 5, without mpb constraints?                                                                 | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P5005  | Revised Access Control                                                                              | P16_P5003 | What is the effect of modifying the access control table to allow less control after                                                             | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P6003  | New round and new access control                                                                    | P16_P5005 | year 20?<br>What is the effect of the new compartment<br>sequence? (P9 off for 10 years, etc)                                                    | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P6004  | Run for 10 days                                                                                     | P16_P6003 | What is the effect of running for an extended period of time?                                                                                    | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P6005  | Turn off Caribou 30/20 rule and patch targets                                                       | P16_P6004 | What is the effect of turning off the caribou constraints?                                                                                       | Minimal effect on harvest levels and other key indicators                                                                     |
| P16_P7001  | Get Incidental volume for DMI from DUA stands                                                       | P16_P6004 |                                                                                                                                                  | Yes, with minimal effect on other indicators                                                                                  |



| TSA Scenar | io                                                                                          | Reference |                                                                                                                                       |                                              |
|------------|---------------------------------------------------------------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Number     | Name                                                                                        | Scenario  | Purpose of TSA Scenario                                                                                                               | Result                                       |
| P16_P8002  | Make DMI DU incidental from under 12m height understory                                     | P16_P7001 | Can we balance the cut with DMI getting<br>most of the DUSW A density volume from<br>stands where the understory is less than<br>12m? | Yes, with minimal effect on other indicators |
| P16_P8003  | Move more of the DU A density Decid<br>Priority into first 20 years                         | P16_P8001 | Can we move more of the DU A density<br>harvest for DMI into the first 20 years to<br>meet 172,000m3?                                 | Yes, with minimal effect on other indicators |
| P16_P9001  | Refine SHS based on manual deferals                                                         | P16_P8003 | Refinement of the SHS                                                                                                                 | Minimal effect on other indicators           |
| P16_P9003  | Refine SHS - fixed missing 2006 blocks and<br>removed underplant pre-blocks                 | P16_P9001 | Refinement of the SHS                                                                                                                 | Minimal effect on other indicators           |
| P16_P9010  | Remove control on DUA strata to allow<br>comparison with PFMS                               | P16_P9003 | What happens to SHS when DUA control is removed?                                                                                      | Minimal effect on other indicators           |
| P16_P9020  | Remove control on Caribou Habitat to allow comparison with PFMS                             | P16_P9003 | What happens to SHS when Caribou Habitat control is removed?                                                                          | Minimal effect on other indicators           |
| P16_P9030  | Remove control on Pine harvest for<br>Mountain Pine Beetle to allow comparison<br>with PFMS | P16_P9003 | What happens to SHS when pine harvest for MPB control is removed?                                                                     | Minimal effect on other indicators           |



| TSA Scenar | io                                                                                               |           | Vol<br>(m <sup>3</sup> | Harvest<br>ume<br><sup>3</sup> /yr) | Deciduous Harvest<br>Volume<br>(m <sup>3</sup> /yr) |                     |  |
|------------|--------------------------------------------------------------------------------------------------|-----------|------------------------|-------------------------------------|-----------------------------------------------------|---------------------|--|
| Number     | Name                                                                                             | Years     | Primary<br>Evenflow    | Secondary 20yr avg.                 | Primary<br>Evenflow                                 | Secondary 20yr avg. |  |
| P16_P3000  | No Harvest                                                                                       | 2007-2206 | -                      | -                                   | -                                                   | -                   |  |
| P16_P3001  | Base line compartment run                                                                        | 2007-2206 | 320,443                | 12,976                              | 78,340                                              | 210,391             |  |
| P16_P3002  | Turn off south P9                                                                                | 2007-2206 | 321,818                | 12,791                              | 78,450                                              | 213,549             |  |
| P16_P3003  | Fix pre-blocks in caribou zone                                                                   | 2007-2206 | 320,669                | 13,239                              | 78,430                                              | 199,560             |  |
| P16_P3004  | Piece size max 2.2 for 10 years, 2.6 for rest                                                    | 2007-2206 | 319,507                | 13,209                              | 78,155                                              | 190,303             |  |
| P16_P3006  | Piece size same as 3004 and turned off Understory<br>protection and Deciduous priority clearcut. | 2007-2206 | 259,193                | 12,740                              | 75,330                                              | 92,391              |  |
| P16_P3007  | P9 harvest off for 20 years                                                                      | 2007-2206 | 318,714                | 7,827                               | 44,118                                              | 202,631             |  |
| P16_P3008  | P9 harvest off for 10 years                                                                      | 2007-2206 | 321,010                | 12,593                              | 70,346                                              | 205,249             |  |
| P16_P3009  | Turn off understory Protection                                                                   | 2007-2206 | 322,131                | 13,262                              | 78,300                                              | 185,311             |  |
| P16_P4001  | DU BCD min harvest age increased to 110 years                                                    | 2007-2206 | 259,311                | 12,716                              | 75,278                                              | 91,349              |  |
| P16_P4002  | Test understory protection when DU Decid priority is<br>not allowed                              | 2007-2206 | 264,476                | 13,168                              | 77,687                                              | 113,940             |  |
| P16_P4003  | Add in more pre-blocks and deferals                                                              | 2007-2206 | 257,113                | 12,820                              | 74,965                                              | 95,966              |  |
| P16_P4006  | First MPB Beetle run - remove 50% pine in 5 years                                                | 2007-2206 | 262,561                | 12,963                              | 75,870                                              | 112,036             |  |
| P16_P4007  | Second MPB Beetle run - remove 75% pine in 20 years                                              | 2007-2206 | 262,181                | 12,919                              | 75,187                                              | 109,479             |  |
| P16_P5000  | Baseline round 5 run - no access control                                                         | 2007-2206 | 296,430                | 13,835                              | 83,449                                              | 151,952             |  |
| P16_P5001  | P6 Rank1 and Rank2 stands targeted                                                               | 2007-2206 | 262,988                | 12,484                              | 75,107                                              | 136,729             |  |
| P16_P5002  | P6 and P9 Rank1 and Rank2 stands targeted                                                        | 2007-2206 | 263,246                | 12,497                              | 75,403                                              | 139,021             |  |
| P16_P5003  | Force tree improvement planting                                                                  | 2007-2206 | 262,792                | 12,824                              | 76,977                                              | 130,561             |  |
| P16_P5004  | Baseline round 5 run - with access control                                                       | 2007-2206 | 262,305                | 12,399                              | 73,934                                              | 154,877             |  |
| P16_P5005  | Revised Access Control                                                                           | 2007-2206 | 283,183                | 12,692                              | 74,579                                              | 140,418             |  |
| P16_P6003  | New round and new access control                                                                 | 2007-2206 | 282,556                | 11,421                              | 62,602                                              | 150,593             |  |
| P16_P6004  | Run for 10 days                                                                                  | 2007-2206 | 293,166                | 12,100                              | 70,630                                              | 145,792             |  |
| P16_P6005  | Turn off Caribou 30/20 rule and patch targets                                                    | 2007-2206 | 293,325                | 12,126                              | 70,633                                              | 147,128             |  |
| P16_P7001  | Get Incidental volume for DMI from DUA stands                                                    | 2007-2206 | 292,777                | 12,379                              | 71,751                                              | 166,222             |  |
| P16_P8002  | Make DMI DU incidental from under 12m height<br>understory                                       | 2007-2206 | 300,893                | 12,402                              | 71,588                                              | 165,729             |  |
| P16_P8003  | Move more of the DU A density Decid Priority into first<br>20 years                              | 2007-2206 | 300,951                | 12,338                              | 71,771                                              | 178,677             |  |
| P16_P9001  | Refine SHS based on manual deferals                                                              | 2007-2206 | 300,801                | 12,597                              | 72,292                                              | 179,943             |  |
| P16_P9003  | Refine SHS - fixed missing 2006 blocks and removed<br>underplant pre-blocks                      | 2007-2206 | 301,817                | 12,736                              | 73,619                                              | 179,298             |  |
| P16_P9010  | Remove control on DUA strata to allow comparison<br>with PFMS                                    | 2007-2206 | 305,756                | 12,605                              | 72,308                                              | 145,762             |  |
| P16_P9020  | Remove control on Caribou Habitat to allow comparison with PFMS                                  | 2007-2206 | 302,070                | 12,556                              | 72,269                                              | 179,958             |  |
| P16_P9030  | Remove control on Pine harvest for Mountain Pine<br>Beetle to allow comparison with PFMS         | 2007-2206 | 301,747                | 12,585                              | 72,250                                              | 185,201             |  |

Note: All scenarios were analyzed using the Patchworks modelling tool.

Indicators highlighted in gray were constrained in the TSA model.



| TSA Scenario | Deciduous S<br>20yr :<br>Volume<br>(m³/; |        | y volume<br>n³/ha/yr) |       | Operable Growi<br>End of<br>(m <sup>3</sup> ) | Percent Operable<br>Growing Stock at<br>End of PH<br>compared to time 0<br>(%) |           |         |       |
|--------------|------------------------------------------|--------|-----------------------|-------|-----------------------------------------------|--------------------------------------------------------------------------------|-----------|---------|-------|
| Number       | DUA                                      | Other  | Conifer               | Decid | Total                                         | Conifer                                                                        | Decid     | Conifer | Decid |
| P16_P3000    |                                          |        | -                     | -     | -                                             | 28,882,138                                                                     | 0         | 184     | 0     |
| P16_P3001    |                                          |        | 1.45                  | 1.09  | 2.54                                          | 10,794,000                                                                     | 3,019,650 | 69      | 305   |
| P16_P3002    |                                          |        | 1.45                  | 1.09  | 2.55                                          | 10,785,005                                                                     | 2,789,708 | 69      | 282   |
| P16_P3003    |                                          |        | 1.45                  | 1.09  | 2.54                                          | 10,782,578                                                                     | 2,788,990 | 69      | 282   |
| P16_P3004    |                                          |        | 1.44                  | 1.09  | 2.53                                          | 10,787,465                                                                     | 3,087,861 | 69      | 312   |
| P16_P3006    |                                          |        | 1.17                  | 1.05  | 2.22                                          | 15,931,887                                                                     | 2,892,542 | 102     | 292   |
| P16_P3007    |                                          |        | 1.44                  | 0.61  | 2.05                                          | 10,783,958                                                                     | 3,190,695 | 69      | 322   |
| P16_P3008    |                                          |        | 1.45                  | 0.98  | 2.43                                          | 10,789,292                                                                     | 2,904,110 | 69      | 293   |
| P16_P3009    |                                          |        | 1.45                  | 1.09  | 2.54                                          | 10,787,673                                                                     | 2,704,888 | 69      | 273   |
| P16_P4001    |                                          |        | 1.17                  | 1.05  | 2.22                                          | 16,134,319                                                                     | 2,655,454 | 103     | 268   |
| P16_P4002    |                                          |        | 1.19                  | 1.08  | 2.28                                          | 14,910,241                                                                     | 3,025,360 | 95      | 306   |
| P16_P4003    |                                          |        | 1.16                  | 1.04  | 2.20                                          | 16,615,721                                                                     | 3,007,211 | 106     | 304   |
| P16_P4006    |                                          |        | 1.18                  | 1.06  | 2.23                                          | 15,696,647                                                                     | 2,888,419 | 100     | 292   |
| P16_P4007    |                                          |        | 1.17                  | 1.05  | 2.22                                          | 15,871,386                                                                     | 3,084,696 | 101     | 312   |
| P16_P5000    |                                          |        | 1.33                  | 1.16  | 2.49                                          | 10,922,494                                                                     | 2,608,744 | 70      | 274   |
| P16_P5001    |                                          |        | 1.18                  | 1.05  | 2.22                                          | 14,101,305                                                                     | 2,596,849 | 90      | 273   |
| P16_P5002    |                                          |        | 1.18                  | 1.05  | 2.23                                          | 13,969,217                                                                     | 2,589,963 | 89      | 273   |
| P16_P5003    |                                          |        | 1.18                  | 1.07  | 2.25                                          | 13,995,274                                                                     | 2,581,300 | 89      | 272   |
| P16_P5004    |                                          |        | 1.17                  | 1.03  | 2.20                                          | 14,520,976                                                                     | 2,959,877 | 93      | 311   |
| P16_P5005    |                                          |        | 1.27                  | 1.04  | 2.31                                          | 12,537,015                                                                     | 2,947,770 | 80      | 310   |
| P16_P6003    | 72,178                                   | 78,415 | 1.26                  | 0.87  | 2.14                                          | 12,453,307                                                                     | 2,647,559 | 79      | 279   |
| P16_P6004    | 64,538                                   | 81,262 | 1.31                  | 0.98  | 2.30                                          | 12,339,048                                                                     | 2,483,151 | 79      | 261   |
| P16_P6005    | 66,359                                   | 80,769 | 1.31                  | 0.98  | 2.30                                          | 12,212,956                                                                     | 2,607,227 | 78      | 274   |
| P16_P7001    | 92,632                                   | 73,590 | 1.31                  | 1.00  | 2.31                                          | 12,186,208                                                                     | 2,667,854 | 78      | 269   |
| P16_P8002    | 91,261                                   | 74,468 | 1.35                  | 1.00  | 2.34                                          | 11,593,404                                                                     | 2,854,661 | 74      | 288   |
| P16_P8003    | 107,351                                  | 71,326 | 1.35                  | 1.00  | 2.35                                          | 11,343,880                                                                     | 3,046,834 | 72      | 308   |
| P16_P9001    | 107,243                                  | 72,700 | 1.35                  | 1.01  | 2.35                                          | 11,269,399                                                                     | 2,791,294 | 72      | 282   |
| P16_P9003    | 106,457                                  | 72,841 | 1.35                  | 1.03  | 2.38                                          | 11,385,819                                                                     | 2,982,478 | 73      | 301   |
| P16_P9010    | 63,620                                   | 82,142 | 1.37                  | 1.01  | 2.38                                          | 10,742,640                                                                     | 2,832,005 | 68      | 286   |
| P16_P9020    | 107,218                                  | 72,739 | 1.35                  | 1.01  | 2.36                                          | 11,012,286                                                                     | 3,048,850 | 70      | 308   |
| P16_P9030    | 107,187                                  | 78,013 | 1.35                  | 1.01  | 2.36                                          | 11,050,734                                                                     | 2,952,002 | 70      | 298   |

| <u>TSA Scenario</u><br>Number | Du A dens<br>20 y<br>Decid<br>Priority | ity Treatr<br>ear averag<br>(ha)<br>Conifer<br>Priority | Tro<br>Improv<br>Planting<br>20 year a<br>(ha<br>SW (G) | ement<br>areas -<br>average |               |
|-------------------------------|----------------------------------------|---------------------------------------------------------|---------------------------------------------------------|-----------------------------|---------------|
|                               |                                        | •                                                       |                                                         |                             |               |
| P16_P3000                     | 0                                      | 0                                                       | 0                                                       | 0                           | 0             |
| P16_P3001                     | 845                                    | 25                                                      | 105                                                     | 135                         | 9             |
| P16_P3002                     | 833                                    | 24                                                      | 122                                                     | 346                         | 16            |
| P16_P3003                     | 760                                    | 37                                                      | 107                                                     | 201                         | 12            |
| P16_P3004                     | 780                                    | 31                                                      | 64                                                      | 60                          | 2             |
| P16_P3006                     | 0                                      | 42                                                      | 0                                                       | 69                          | 8             |
| P16_P3007                     | 820                                    | 28                                                      | 90                                                      | 149                         | 8             |
| P16_P3008                     | 802                                    | 22                                                      | 115                                                     | 252                         | 16            |
| P16_P3009                     | 763                                    | 23                                                      | 0                                                       | 222                         | 16            |
| P16_P4001                     | 0                                      | 41                                                      | 0                                                       | 257                         | 28            |
| P16_P4002                     | 0                                      | 40                                                      | 135                                                     | 91                          | 15            |
| P16_P4003                     | 122                                    | 44                                                      | 0                                                       | 80                          | 5             |
| P16_P4006                     | 335                                    | 11                                                      | 0                                                       | 20                          | $\frac{5}{2}$ |
| P16_P4007                     | 350                                    | 10                                                      | 0                                                       | 19                          | 6             |
| P16_P5000                     | 535                                    | 11                                                      | 0                                                       | 141                         | 120           |
| P16_P5001                     | 481                                    | 7                                                       | 0                                                       | 98                          | 104           |
| P16_P5002                     | 491                                    | 6                                                       | 0                                                       | 97                          | 122           |
| P16_P5003                     | 446                                    | 4                                                       | 0                                                       | 294                         | 179           |
| P16_P5004                     | 641                                    | 14                                                      | 0                                                       | 29                          | 0             |
| P16_P5005                     | 480                                    | 11                                                      | 0                                                       | 176                         | 94            |
| P16_P6003                     | 535                                    | 11                                                      | 0                                                       | 140                         | 85            |
| P16_P6004                     | 490                                    | 13                                                      | 0                                                       | 153                         | 186           |
| P16_P6005                     | 502                                    | 13                                                      | 0                                                       | 155                         | 187           |
| P16_P7001                     | 648                                    | 10                                                      | 0                                                       | 140                         | 190           |
| P16_P8002                     | 560                                    | 0                                                       | 0                                                       | 146                         | 200           |
| P16_P8003                     | 670                                    | 22                                                      | 0                                                       | 137                         | 205           |
| P16_P9001                     | 656                                    | 25                                                      | 0                                                       | 146                         | 203           |
| P16_P9003                     | 654                                    | 25                                                      | 0                                                       | 193                         | 207           |
| P16_P9010                     | 395                                    | 76                                                      | 0                                                       | 160                         | 207           |
| P16_P9020                     | 660                                    | 25                                                      | 0                                                       | 162                         | 207           |
| P16_P9030                     | 660                                    | 25                                                      | 0                                                       | 214                         | 91            |



| Caribou Zone and APMA - D, DC and CD less than 30 years old in patches less than |  |
|----------------------------------------------------------------------------------|--|
| 300 ha                                                                           |  |

| TSA Scenario  |        |       | (ha)      |        | 500 1  |        |       | (%)   |       |         |
|---------------|--------|-------|-----------|--------|--------|--------|-------|-------|-------|---------|
| 15A Scenario  |        | 10    | <u>50</u> | 100    | 200    |        | 10    | 50    | 100   | 200     |
| Number        | Year 0 | years | years     | years  | years  | Year 0 | years | years | years | years   |
| P16_P3000     | 3,899  | 1,948 | 0         | 0      | 8,263  | 100    | 100   | 0     | 0     | •<br>93 |
| <br>P16_P3001 | 3,937  | 4,766 | 13,461    | 21,327 | 9,484  | 100    | 78    | 67    | 85    | 64      |
| <br>P16_P3002 | 3,937  | 4,814 | 10,886    | 18,149 | 6,291  | 100    | 74    | 58    | 75    | 49      |
| P16_P3003     | 4,304  | 3,815 | 11,924    | 19,090 | 9,265  | 93     | 79    | 59    | 79    | 63      |
| P16_P3004     | 3,937  | 5,512 | 15,409    | 21,715 | 15,532 | 100    | 87    | 71    | 87    | 80      |
| P16_P3006     | 3,937  | 4,953 | 10,236    | 20,351 | 13,295 | 100    | 92    | 66    | 85    | 75      |
| P16_P3007     | 3,937  | 3,982 | 10,366    | 20,084 | 8,558  | 100    | 86    | 61    | 81    | 64      |
| P16_P3008     | 3,937  | 3,517 | 10,778    | 18,775 | 6,234  | 100    | 81    | 56    | 77    | 50      |
| P16_P3009     | 3,937  | 5,430 | 9,368     | 15,313 | 7,285  | 100    | 86    | 51    | 65    | 51      |
| P16_P4001     | 3,937  | 4,479 | 7,305     | 16,226 | 7,125  | 100    | 91    | 53    | 74    | 58      |
| P16_P4002     | 3,937  | 5,055 | 11,153    | 19,514 | 13,581 | 100    | 92    | 67    | 82    | 67      |
| P16_P4003     | 3,936  | 4,379 | 10,944    | 22,596 | 15,309 | 100    | 86    | 66    | 91    | 77      |
| P16_P4006     | 4,100  | 3,887 | 7,062     | 12,046 | 9,997  | 100    | 83    | 52    | 67    | 63      |
| P16_P4007     | 4,100  | 3,499 | 8,047     | 14,060 | 13,210 | 100    | 76    | 56    | 63    | 67      |
| P16_P5000     | 4,100  | 5,067 | 10,621    | 14,773 | 9,533  | 100    | 86    | 55    | 66    | 53      |
| P16_P5001     | 4,100  | 4,149 | 7,579     | 9,882  | 8,472  | 100    | 87    | 46    | 55    | 49      |
| P16_P5002     | 4,100  | 4,117 | 7,717     | 9,692  | 8,508  | 100    | 86    | 47    | 54    | 49      |
| P16_P5003     | 4,100  | 4,460 | 7,715     | 9,941  | 9,625  | 100    | 88    | 46    | 56    | 55      |
| P16_P5004     | 4,101  | 5,577 | 11,109    | 12,911 | 11,337 | 100    | 83    | 64    | 64    | 70      |
| P16_P5005     | 4,100  | 5,256 | 9,955     | 14,968 | 10,005 | 100    | 94    | 59    | 66    | 64      |
| P16_P6003     | 4,100  | 4,904 | 8,172     | 12,587 | 9,108  | 100    | 100   | 61    | 60    | 55      |
| P16_P6004     | 4,100  | 4,951 | 9,536     | 13,230 | 10,188 | 100    | 94    | 63    | 67    | 61      |
| P16_P6005     | 4,100  | 5,225 | 11,581    | 16,730 | 11,716 | 100    | 100   | 71    | 76    | 69      |
| P16_P7001     | 4,100  | 4,988 | 8,758     | 13,452 | 9,469  | 100    | 94    | 55    | 67    | 62      |
| P16_P8002     | 4,077  | 3,911 | 16,863    | 18,539 | 14,311 | 100    | 100   | 82    | 79    | 76      |
| P16_P8003     | 4,100  | 4,274 | 18,101    | 21,502 | 17,956 | 100    | 100   | 88    | 88    | 86      |
| P16_P9001     | 4,100  | 4,106 | 12,849    | 18,087 | 12,372 | 100    | 100   | 71    | 75    | 71      |
| P16_P9003     | 4,100  | 4,180 | 15,046    | 17,605 | 12,279 | 100    | 100   | 75    | 74    | 72      |
| P16_P9010     | 4,100  | 4,333 | 13,555    | 18,142 | 12,723 | 100    | 100   | 73    | 74    | 71      |
| P16_P9020     | 4,100  | 4,138 | 17,409    | 24,382 | 18,233 | 100    | 100   | 87    | 90    | 92      |
| P16_P9030     | 4,100  | 4,419 | 14,783    | 18,088 | 13,822 | 100    | 100   | 76    | 73    | 73      |

| TSA Scenario  | Active<br>Landbase<br>(ha) |        | Active | Landba<br>(%) | se Old |       | Active Landbase Old plus Mature<br>(ha) |       |                    |       |       |  |
|---------------|----------------------------|--------|--------|---------------|--------|-------|-----------------------------------------|-------|--------------------|-------|-------|--|
| 1011 Sechurio | (IIII)                     |        | 10     | 50            | 100    | 200   |                                         | 10    | <u>(110)</u><br>50 | 100   | 200   |  |
| Number        | 295,291                    | Year 0 | years  | years         | years  | years | Year 0                                  | years | years              | years | years |  |
| P16_P3000     |                            | 14%    | 23%    | 74%           | 97%    | 75%   | 55%                                     | 78%   | 96%                | 99%   | 75%   |  |
| P16_P3001     |                            | 14%    | 17%    | 36%           | 15%    | 16%   | 54%                                     | 68%   | 52%                | 33%   | 38%   |  |
| P16_P3002     |                            | 14%    | 17%    | 35%           | 15%    | 17%   | 54%                                     | 68%   | 52%                | 33%   | 38%   |  |
| P16_P3003     |                            | 13%    | 17%    | 36%           | 15%    | 15%   | 53%                                     | 68%   | 52%                | 33%   | 38%   |  |
| P16_P3004     |                            | 14%    | 17%    | 36%           | 15%    | 14%   | 54%                                     | 69%   | 52%                | 33%   | 37%   |  |
| P16_P3006     |                            | 14%    | 18%    | 46%           | 27%    | 25%   | 54%                                     | 70%   | 61%                | 40%   | 42%   |  |
| P16_P3007     |                            | 14%    | 17%    | 39%           | 19%    | 18%   | 54%                                     | 69%   | 55%                | 35%   | 41%   |  |
| P16_P3008     |                            | 14%    | 17%    | 36%           | 15%    | 16%   | 54%                                     | 68%   | 52%                | 33%   | 38%   |  |
| P16_P3009     |                            | 14%    | 17%    | 36%           | 15%    | 16%   | 54%                                     | 68%   | 52%                | 34%   | 38%   |  |
| P16_P4001     |                            | 14%    | 18%    | 46%           | 28%    | 27%   | 54%                                     | 70%   | 61%                | 41%   | 43%   |  |
| P16_P4002     |                            | 14%    | 18%    | 44%           | 26%    | 25%   | 54%                                     | 70%   | 60%                | 39%   | 40%   |  |
| P16_P4003     |                            | 14%    | 18%    | 47%           | 28%    | 24%   | 54%                                     | 70%   | 61%                | 41%   | 43%   |  |
| P16_P4006     |                            | 14%    | 18%    | 43%           | 28%    | 27%   | 54%                                     | 70%   | 60%                | 43%   | 45%   |  |
| P16_P4007     |                            | 14%    | 19%    | 44%           | 27%    | 26%   | 54%                                     | 70%   | 60%                | 44%   | 46%   |  |
| P16_P5000     |                            | 14%    | 17%    | 39%           | 20%    | 17%   | 54%                                     | 69%   | 54%                | 37%   | 38%   |  |
| P16_P5001     |                            | 14%    | 18%    | 42%           | 27%    | 25%   | 54%                                     | 70%   | 59%                | 43%   | 43%   |  |
| P16_P5002     |                            | 14%    | 18%    | 42%           | 27%    | 25%   | 54%                                     | 70%   | 58%                | 43%   | 43%   |  |
| P16_P5003     |                            | 14%    | 18%    | 43%           | 28%    | 25%   | 54%                                     | 70%   | 59%                | 43%   | 43%   |  |
| P16_P5004     |                            | 14%    | 17%    | 42%           | 27%    | 25%   | 54%                                     | 69%   | 58%                | 43%   | 45%   |  |
| P16_P5005     |                            | 14%    | 17%    | 41%           | 23%    | 22%   | 54%                                     | 69%   | 57%                | 40%   | 41%   |  |
| P16_P6003     |                            | 14%    | 18%    | 42%           | 25%    | 23%   | 54%                                     | 70%   | 58%                | 42%   | 42%   |  |
| P16_P6004     |                            | 14%    | 18%    | 41%           | 23%    | 21%   | 54%                                     | 69%   | 56%                | 40%   | 41%   |  |
| P16_P6005     |                            | 14%    | 18%    | 40%           | 22%    | 20%   | 54%                                     | 69%   | 56%                | 39%   | 41%   |  |
| P16_P7001     |                            | 14%    | 17%    | 40%           | 23%    | 21%   | 54%                                     | 69%   | 56%                | 40%   | 41%   |  |
| P16_P8002     |                            | 14%    | 17%    | 38%           | 20%    | 18%   | 54%                                     | 69%   | 54%                | 37%   | 40%   |  |
| P16_P8003     |                            | 14%    | 17%    | 39%           | 19%    | 16%   | 54%                                     | 69%   | 54%                | 37%   | 38%   |  |
| P16_P9001     |                            | 14%    | 17%    | 40%           | 20%    | 19%   | 54%                                     | 69%   | 55%                | 37%   | 40%   |  |
| P16_P9003     |                            | 14%    | 17%    | 40%           | 20%    | 19%   | 54%                                     | 69%   | 55%                | 37%   | 40%   |  |
| P16_P9010     |                            | 14%    | 18%    | 41%           | 20%    | 17%   | 54%                                     | 69%   | 55%                | 36%   | 38%   |  |
| P16_P9020     |                            | 14%    | 17%    | 40%           | 19%    | 17%   | 54%                                     | 69%   | 55%                | 36%   | 39%   |  |
| P16_P9030     |                            | 14%    | 17%    | 40%           | 19%    | 18%   | 54%                                     | 69%   | 55%                | 36%   | 39%   |  |



| TSA Scenario |        | Active I | Landbase<br>(ha) | e Regen |       | Gross<br>Landbase<br>(ha) |        | Gross | Landbas<br>(ha) | se Old |       |
|--------------|--------|----------|------------------|---------|-------|---------------------------|--------|-------|-----------------|--------|-------|
|              |        | 10       | 50               | 100     | 200   |                           |        | 10    | 50              | 100    | 200   |
| Number       | Year 0 | years    | years            | years   | years | 595,677                   | Year 0 | years | years           | years  | years |
| P16_P3000    | 3%     | 2%       | 0%               | 0%      | 12%   |                           | 8%     | 12%   | 46%             | 74%    | 67%   |
| P16_P3001    | 3%     | 12%      | 14%              | 14%     | 15%   |                           | 7%     | 10%   | 27%             | 34%    | 38%   |
| P16_P3002    | 3%     | 12%      | 13%              | 14%     | 15%   |                           | 7%     | 9%    | 27%             | 34%    | 38%   |
| P16_P3003    | 4%     | 12%      | 13%              | 14%     | 15%   |                           | 7%     | 10%   | 27%             | 34%    | 38%   |
| P16_P3004    | 3%     | 11%      | 14%              | 14%     | 14%   |                           | 7%     | 10%   | 27%             | 34%    | 37%   |
| P16_P3006    | 3%     | 10%      | 11%              | 12%     | 15%   |                           | 7%     | 10%   | 32%             | 40%    | 43%   |
| P16_P3007    | 3%     | 11%      | 13%              | 14%     | 14%   |                           | 7%     | 10%   | 28%             | 36%    | 39%   |
| P16_P3008    | 3%     | 12%      | 14%              | 14%     | 15%   |                           | 7%     | 10%   | 27%             | 34%    | 38%   |
| P16_P3009    | 3%     | 11%      | 13%              | 13%     | 16%   |                           | 7%     | 10%   | 27%             | 34%    | 38%   |
| P16_P4001    | 3%     | 10%      | 11%              | 12%     | 16%   |                           | 7%     | 10%   | 32%             | 40%    | 44%   |
| P16_P4002    | 3%     | 10%      | 12%              | 13%     | 15%   |                           | 7%     | 10%   | 31%             | 39%    | 42%   |
| P16_P4003    | 3%     | 10%      | 11%              | 12%     | 14%   |                           | 7%     | 10%   | 32%             | 40%    | 42%   |
| P16_P4006    | 3%     | 10%      | 12%              | 11%     | 13%   |                           | 7%     | 10%   | 30%             | 40%    | 43%   |
| P16_P4007    | 3%     | 10%      | 11%              | 11%     | 12%   |                           | 7%     | 10%   | 31%             | 40%    | 43%   |
| P16_P5000    | 3%     | 11%      | 13%              | 12%     | 16%   |                           | 7%     | 10%   | 28%             | 36%    | 39%   |
| P16_P5001    | 3%     | 10%      | 11%              | 11%     | 15%   |                           | 7%     | 10%   | 30%             | 40%    | 42%   |
| P16_P5002    | 3%     | 10%      | 11%              | 11%     | 15%   |                           | 7%     | 10%   | 30%             | 40%    | 42%   |
| P16_P5003    | 3%     | 10%      | 12%              | 11%     | 15%   |                           | 7%     | 10%   | 30%             | 40%    | 42%   |
| P16_P5004    | 3%     | 11%      | 12%              | 11%     | 14%   |                           | 7%     | 10%   | 30%             | 40%    | 42%   |
| P16_P5005    | 3%     | 11%      | 12%              | 12%     | 14%   |                           | 7%     | 10%   | 29%             | 38%    | 41%   |
| P16_P6003    | 3%     | 10%      | 12%              | 11%     | 14%   |                           | 7%     | 10%   | 30%             | 39%    | 41%   |
| P16_P6004    | 3%     | 10%      | 12%              | 12%     | 15%   |                           | 7%     | 10%   | 29%             | 38%    | 40%   |
| P16_P6005    | 3%     | 10%      | 12%              | 12%     | 15%   |                           | 7%     | 10%   | 29%             | 37%    | 40%   |
| P16_P7001    | 3%     | 10%      | 12%              | 12%     | 15%   |                           | 7%     | 10%   | 29%             | 38%    | 41%   |
| P16_P8002    | 3%     | 11%      | 13%              | 13%     | 15%   |                           | 7%     | 10%   | 28%             | 36%    | 39%   |
| P16_P8003    | 3%     | 11%      | 13%              | 14%     | 16%   |                           | 7%     | 10%   | 28%             | 36%    | 38%   |
| P16_P9001    | 4%     | 11%      | 12%              | 13%     | 16%   |                           | 7%     | 10%   | 29%             | 36%    | 39%   |
| P16_P9003    | 4%     | 11%      | 12%              | 13%     | 16%   |                           | 7%     | 10%   | 29%             | 36%    | 39%   |
| P16_P9010    | 4%     | 10%      | 13%              | 13%     | 16%   |                           | 7%     | 10%   | 29%             | 36%    | 39%   |
| P16_P9020    | 4%     | 11%      | 13%              | 14%     | 16%   |                           | 7%     | 10%   | 29%             | 36%    | 39%   |
| P16_P9030    | 4%     | 11%      | 13%              | 14%     | 16%   |                           | 7%     | 10%   | 29%             | 36%    | 39%   |

|              | Gros   | ss Landb | ase Old | plus Ma | ture  |        | Gross L | Gross Landbase Regen |       |       |  |  |  |  |
|--------------|--------|----------|---------|---------|-------|--------|---------|----------------------|-------|-------|--|--|--|--|
| TSA Scenario |        |          | (ha)    |         |       |        |         | (ha)                 |       |       |  |  |  |  |
|              |        | 10       | 50      | 100     | 200   |        | 10      | 50                   | 100   | 200   |  |  |  |  |
| Number       | Year 0 | years    | years   | years   | years | Year 0 | years   | years                | years | years |  |  |  |  |
| P16_P3000    | 36%    | 52%      | 80%     | 86%     | 67%   | 2%     | 1%      | 0%                   | 0%    | 10%   |  |  |  |  |
| P16_P3001    | 36%    | 47%      | 58%     | 53%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 11%   |  |  |  |  |
| P16_P3002    | 36%    | 47%      | 58%     | 53%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 12%   |  |  |  |  |
| P16_P3003    | 35%    | 47%      | 58%     | 53%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 11%   |  |  |  |  |
| P16_P3004    | 36%    | 48%      | 58%     | 53%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 11%   |  |  |  |  |
| P16_P3006    | 36%    | 48%      | 63%     | 56%     | 51%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P3007    | 36%    | 48%      | 60%     | 54%     | 50%   | 3%     | 5%      | 6%                   | 7%    | 11%   |  |  |  |  |
| P16_P3008    | 36%    | 47%      | 58%     | 52%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 11%   |  |  |  |  |
| P16_P3009    | 36%    | 47%      | 58%     | 53%     | 49%   | 3%     | 6%      | 7%                   | 7%    | 12%   |  |  |  |  |
| P16_P4001    | 36%    | 48%      | 63%     | 57%     | 51%   | 3%     | 5%      | 6%                   | 6%    | 12%   |  |  |  |  |
| P16_P4002    | 36%    | 48%      | 62%     | 55%     | 50%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P4003    | 36%    | 48%      | 63%     | 56%     | 52%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P4006    | 36%    | 48%      | 62%     | 58%     | 52%   | 3%     | 5%      | 6%                   | 5%    | 11%   |  |  |  |  |
| P16_P4007    | 36%    | 48%      | 62%     | 58%     | 53%   | 3%     | 5%      | 6%                   | 6%    | 10%   |  |  |  |  |
| P16_P5000    | 36%    | 48%      | 59%     | 55%     | 49%   | 3%     | 6%      | 6%                   | 6%    | 12%   |  |  |  |  |
| P16_P5001    | 36%    | 48%      | 62%     | 58%     | 51%   | 3%     | 5%      | 6%                   | 5%    | 11%   |  |  |  |  |
| P16_P5002    | 36%    | 48%      | 61%     | 58%     | 51%   | 3%     | 5%      | 6%                   | 5%    | 11%   |  |  |  |  |
| P16_P5003    | 36%    | 48%      | 62%     | 58%     | 51%   | 3%     | 5%      | 6%                   | 5%    | 11%   |  |  |  |  |
| P16_P5004    | 36%    | 48%      | 61%     | 58%     | 52%   | 3%     | 5%      | 6%                   | 5%    | 11%   |  |  |  |  |
| P16_P5005    | 36%    | 48%      | 61%     | 56%     | 50%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P6003    | 36%    | 48%      | 61%     | 57%     | 51%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P6004    | 36%    | 48%      | 60%     | 56%     | 50%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P6005    | 36%    | 48%      | 60%     | 56%     | 50%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P7001    | 36%    | 48%      | 60%     | 56%     | 51%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P8002    | 36%    | 48%      | 59%     | 55%     | 50%   | 3%     | 5%      | 6%                   | 6%    | 11%   |  |  |  |  |
| P16_P8003    | 36%    | 48%      | 59%     | 55%     | 49%   | 3%     | 5%      | 7%                   | 7%    | 12%   |  |  |  |  |
| P16_P9001    | 36%    | 47%      | 60%     | 55%     | 50%   | 3%     | 6%      | 6%                   | 7%    | 12%   |  |  |  |  |
| P16_P9003    | 36%    | 47%      | 60%     | 55%     | 50%   | 3%     | 6%      | 6%                   | 6%    | 12%   |  |  |  |  |
| P16_P9010    | 36%    | 48%      | 60%     | 54%     | 49%   | 3%     | 5%      | 6%                   | 7%    | 12%   |  |  |  |  |
| P16_P9020    | 36%    | 47%      | 60%     | 54%     | 49%   | 3%     | 6%      | 6%                   | 7%    | 12%   |  |  |  |  |
| P16_P9030    | 36%    | 47%      | 60%     | 54%     | 49%   | 3%     | 6%      | 6%                   | 7%    | 12%   |  |  |  |  |



| TSA Scenario           |                  | Landbase<br>120 year:<br>(ha) | -                |                  | Landbase<br>120 year<br>(ha) | -                  | than 12          | Landbase<br>0 years old<br>ches > 120<br>(ha) | d and in           |
|------------------------|------------------|-------------------------------|------------------|------------------|------------------------------|--------------------|------------------|-----------------------------------------------|--------------------|
| Number                 | Year 0           | 10 years                      | 50 years         | Year 0           | 10 years                     | 50 years           | Year 0           | 10 years                                      | 50 years           |
| P16_P3000              | 37,639           | 74,407                        | 191,764          | 53,091           | 113,800                      | 320,652            | 27,334           | 80,248                                        | 292,042            |
| P16_P3001              | 35,819           | 57,422                        | 81,384           | 51,271           | 96,816                       | 210,272            | 25,278           | 61,833                                        | 167,886            |
| P16_P3002              | 35,819           | 57,198                        | 81,499           | 51,271           | 96,591                       | 210,387            | 25,278           | 61,714                                        | 167,874            |
| P16_P3003              | 35,051           | 56,421                        | 81,615           | 50,503           | 95,815                       | 210,504            | 24,123           | 59,875                                        | 167,700            |
| P16_P3004              | 35,819           | 56,072                        | 83,170           | 51,271           | 95,466                       | 212,059            | 25,278           | 58,351                                        | 169,016            |
| P16_P3006              | 35,819           | 58,508                        | 106,532          | 51,271           | 97,902                       | 235,420            | 25,278           | 62,804                                        | 195,201            |
| P16_P3007              | 35,819           | 57,477                        | 87,659           | 51,271           | 96,870                       | 216,547            | 25,278           | 61,386                                        | 175,578            |
| P16_P3008              | 35,819           | 56,959                        | 81,556           | 51,271           | 96,353                       | 210,444            | 25,278           | 61,079                                        | 167,680            |
| P16_P3009              | 35,819           | 55,918                        | 82,095           | 51,271           | 95,311                       | 210,983            | 25,278           | 59,268                                        | 167,910            |
| P16_P4001              | 35,819           | 58,432                        | 106,137          | 51,271           | 97,826                       | 235,025            | 25,278           | 62,620                                        | 194,752            |
| P16_P4002              | 35,819           | 58,053                        | 105,679          | 51,271           | 97,447                       | 234,567            | 25,278           | 62,562                                        | 194,411            |
| P16_P4003              | 35,839           | 58,832                        | 107,775          | 51,291           | 98,226                       | 236,663            | 25,278           | 63,020                                        | 196,695            |
| P16_P4006              | 35,839           | 58,727                        | 101,249          | 51,291           | 98,120                       | 230,137            | 25,278           | 61,944                                        | 189,501            |
| P16_P4007              | 35,839           | 58,950                        | 100,317          | 51,291           | 98,344                       | 229,205            | 25,278           | 62,600                                        | 188,306            |
| P16_P5000              | 35,839           | 56,389                        | 88,490           | 51,291           | 95,783                       | 217,378            | 25,278           | 59,828                                        | 174,868            |
| P16_P5001              | 35,839           | 58,053                        | 99,136           | 51,291           | 97,446                       | 228,025            | 25,278           | 61,860                                        | 185,410            |
| P16_P5002              | 35,839           | 58,065                        | 98,713           | 51,291           | 97,458                       | 227,602            | 25,278           | 62,324                                        | 185,457            |
| P16_P5003              | 35,839           | 58,129                        | 100,621          | 51,291           | 97,523                       | 229,510            | 25,278           | 62,504                                        | 186,873            |
| P16_P5004              | 35,819           | 57,693                        | 98,485           | 51,271           | 97,086                       | 227,373            | 25,278           | 61,629                                        | 185,340            |
| P16_P5005              | 35,839           | 56,736                        | 93,947           | 51,291           | 96,130                       | 222,836            | 25,278           | 58,356                                        | 180,771            |
| P16_P6003              | 35,839           | 57,571                        | 95,858           | 51,291           | 96,965                       | 224,746            | 25,278           | 61,745                                        | 184,879            |
| P16_P6004              | 35,839           | 56,251<br>56,276              | 91,052           | 51,291           | 95,645                       | 219,940            | 25,278           | 59,480                                        | 178,018            |
| P16_P6005<br>P16_P7001 | 35,839<br>35,839 | 56,607                        | 91,012<br>90,581 | 51,291<br>51,291 | 95,670<br>96,001             | 219,901<br>219,470 | 25,278<br>25,278 | 59,549<br>59,172                              | 177,751<br>177,845 |
| P16_P8002              | 35,912           | 56,269                        | 87,048           | 51,291           | 95,663                       | 219,470            | 25,379           | 59,867                                        | 172,659            |
| P16_P8003              | 35,841           | 55,896                        | 88,041           | 51,293           | 95,289                       | 216,930            | 25,282           | 59,511                                        | 173,096            |
| P16_P9001              | 35,333           | 55,488                        | 88,555           | 50,786           | 94,881                       | 217,443            | 24,593           | 58,957                                        | 174,131            |
| P16_P9003              | 35,316           | 55,171                        | 89,227           | 50,768           | 94,564                       | 218,115            | 24,593           | 58,320                                        | 175,308            |
| P16_P9010              | 35,333           | 55,543                        | 90,232           | 50,786           | 94,937                       | 219,121            | 24,593           | 58,877                                        | 177,099            |
| P16_P9020              | 35,333           | 55,317                        | 88,366           | 50,786           | 94,710                       | 217,255            | 24,593           | 58,842                                        | 174,428            |
| P16_P9030              | 35,333           | 55,390                        | 88,145           | 50,786           | 94,784                       | 217,033            | 24,593           | 57,833                                        | 173,708            |

| TSA Scenario |        | •       | andbase  <br> rs old)<br> a) | •       | Firesmart Gross landbase i<br>any 'c' classification<br>(ha) |          |          |  |  |  |  |
|--------------|--------|---------|------------------------------|---------|--------------------------------------------------------------|----------|----------|--|--|--|--|
|              |        |         | 60-200                       |         |                                                              |          |          |  |  |  |  |
| Number       | 0-7 ha | 8-60 ha | ha                           | 200+ ha | Year 0                                                       | 10 years | 50 years |  |  |  |  |
| P16_P3000    | 411    | 3,239   | 1,370                        | 284     | 188,998                                                      | 229,643  | 253,511  |  |  |  |  |
| P16_P3001    | 1,293  | 6,608   | 29,962                       | 3,400   | 187,924                                                      | 220,926  | 238,944  |  |  |  |  |
| P16_P3002    | 1,220  | 6,570   | 29,732                       | 4,044   | 187,924                                                      | 221,569  | 235,422  |  |  |  |  |
| P16_P3003    | 1,234  | 5,755   | 29,937                       | 4,388   | 187,381                                                      | 219,950  | 237,685  |  |  |  |  |
| P16_P3004    | 1,356  | 6,759   | 27,555                       | 3,952   | 187,924                                                      | 220,073  | 239,331  |  |  |  |  |
| P16_P3006    | 1,400  | 6,858   | 21,739                       | 3,128   | 187,924                                                      | 220,074  | 235,477  |  |  |  |  |
| P16_P3007    | 1,311  | 6,220   | 26,929                       | 2,794   | 187,924                                                      | 220,762  | 238,737  |  |  |  |  |
| P16_P3008    | 1,425  | 6,216   | 29,133                       | 3,545   | 187,924                                                      | 220,703  | 237,474  |  |  |  |  |
| P16_P3009    | 1,299  | 6,106   | 28,319                       | 5,058   | 187,924                                                      | 219,221  | 233,705  |  |  |  |  |
| P16_P4001    | 1,269  | 6,204   | 22,694                       | 3,013   | 187,924                                                      | 219,816  | 230,832  |  |  |  |  |
| P16_P4002    | 1,486  | 7,217   | 22,023                       | 2,848   | 187,924                                                      | 221,032  | 238,629  |  |  |  |  |
| P16_P4003    | 1,389  | 7,301   | 21,636                       | 3,124   | 187,941                                                      | 220,150  | 235,697  |  |  |  |  |
| P16_P4006    | 1,136  | 5,687   | 23,451                       | 3,394   | 187,941                                                      | 220,451  | 240,251  |  |  |  |  |
| P16_P4007    | 1,237  | 5,367   | 24,228                       | 3,549   | 187,941                                                      | 219,198  | 239,349  |  |  |  |  |
| P16_P5000    | 1,481  | 6,050   | 26,720                       | 4,801   | 246,022                                                      | 240,305  | 236,690  |  |  |  |  |
| P16_P5001    | 1,275  | 6,500   | 22,634                       | 5,080   | 246,022                                                      | 241,005  | 238,846  |  |  |  |  |
| P16_P5002    | 1,283  | 6,276   | 23,020                       | 5,203   | 246,022                                                      | 240,921  | 238,535  |  |  |  |  |
| P16_P5003    | 1,211  | 7,110   | 21,614                       | 5,265   | 246,022                                                      | 240,741  | 233,316  |  |  |  |  |
| P16_P5004    | 1,132  | 6,142   | 23,744                       | 5,650   | 246,005                                                      | 243,322  | 242,633  |  |  |  |  |
| P16_P5005    | 1,362  | 6,308   | 25,423                       | 4,210   | 246,022                                                      | 241,945  | 234,694  |  |  |  |  |
| P16_P6003    | 1,400  | 7,092   | 22,120                       | 5,469   | 246,022                                                      | 240,654  | 237,460  |  |  |  |  |
| P16_P6004    | 1,438  | 6,851   | 23,771                       | 5,192   | 245,953                                                      | 239,484  | 233,114  |  |  |  |  |
| P16_P6005    | 1,429  | 6,785   | 23,970                       | 5,128   | 245,953                                                      | 239,471  | 233,837  |  |  |  |  |
| P16_P7001    | 1,687  | 8,326   | 22,426                       | 5,162   | 245,953                                                      | 239,913  | 233,126  |  |  |  |  |
| P16_P8002    | 1,841  | 10,019  | 19,767                       | 6,679   | 245,953                                                      | 239,565  | 233,769  |  |  |  |  |
| P16_P8003    | 1,743  | 9,881   | 18,457                       | 9,149   | 245,953                                                      | 239,889  | 233,706  |  |  |  |  |
| P16_P9001    | 1,634  | 9,434   | 19,172                       | 9,582   | 245,531                                                      | 239,363  | 233,107  |  |  |  |  |
| P16_P9003    | 1,670  | 9,358   | 18,904                       | 10,105  | 245,485                                                      | 239,309  | 233,758  |  |  |  |  |
| P16_P9010    | 1,588  | 7,548   | 22,511                       | 6,083   | 245,531                                                      | 238,814  | 232,966  |  |  |  |  |
| P16_P9020    | 1,612  | 9,082   | 18,382                       | 10,804  | 245,531                                                      | 239,260  | 233,105  |  |  |  |  |
| P16_P9030    | 1,293  | 7,276   | 22,106                       | 9,465   | 245,531                                                      | 240,034  | 234,881  |  |  |  |  |



| TSA Scenario | landba<br>classificat | Firesmart Gross<br>landbase in any 'c'<br>classification - Patches ><br>1000ha<br>(%) |       |        | Firesmart Active landbase in<br>any 'c' classification<br>(ha) |          |  |
|--------------|-----------------------|---------------------------------------------------------------------------------------|-------|--------|----------------------------------------------------------------|----------|--|
|              |                       | 10                                                                                    | 50    |        |                                                                |          |  |
| Number       | Year 0                | years                                                                                 | years | Year 0 | 10 years                                                       | 50 years |  |
| P16_P3000    | 43                    | 53                                                                                    | 60    |        |                                                                |          |  |
| P16_P3001    | 43                    | 49                                                                                    | 53    |        |                                                                |          |  |
| P16_P3002    | 43                    | 49                                                                                    | 51    |        |                                                                |          |  |
| P16_P3003    | 42                    | 48                                                                                    | 51    |        |                                                                |          |  |
| P16_P3004    | 43                    | 48                                                                                    | 54    |        |                                                                |          |  |
| P16_P3006    | 43                    | 49                                                                                    | 53    |        |                                                                |          |  |
| P16_P3007    | 43                    | 49                                                                                    | 54    |        |                                                                |          |  |
| P16_P3008    | 43                    | 48                                                                                    | 52    |        |                                                                |          |  |
| P16_P3009    | 43                    | 48                                                                                    | 49    |        |                                                                |          |  |
| P16_P4001    | 43                    | 49                                                                                    | 48    | 76,825 | 70,913                                                         | 61,493   |  |
| P16_P4002    | 43                    | 49                                                                                    | 51    | 76,825 | 72,128                                                         | 69,290   |  |
| P16_P4003    | 43                    | 50                                                                                    | 52    | 76,841 | 71,247                                                         | 66,358   |  |
| P16_P4006    | 43                    | 48                                                                                    | 52    | 76,841 | 71,548                                                         | 70,913   |  |
| P16_P4007    | 43                    | 48                                                                                    | 53    | 76,841 | 70,294                                                         | 70,010   |  |
| P16_P5000    | 58                    | 55                                                                                    | 51    |        |                                                                |          |  |
| P16_P5001    | 58                    | 55                                                                                    | 51    |        |                                                                |          |  |
| P16_P5002    | 58                    | 55                                                                                    | 50    |        |                                                                |          |  |
| P16_P5003    | 58                    | 55                                                                                    | 49    | 81,301 | 72,390                                                         | 63,863   |  |
| P16_P5004    | 58                    | 57                                                                                    | 55    | 81,284 | 74,972                                                         | 73,180   |  |
| P16_P5005    | 58                    | 56                                                                                    | 49    | 81,301 | 73,595                                                         | 65,242   |  |
| P16_P6003    | 58                    | 54                                                                                    | 53    | 81,435 | 72,427                                                         | 68,089   |  |
| P16_P6004    | 58                    | 53                                                                                    | 52    | 81,367 | 71,257                                                         | 63,708   |  |
| P16_P6005    | 58                    | 53                                                                                    | 52    | 81,367 | 71,245                                                         | 64,480   |  |
| P16_P7001    | 58                    | 54                                                                                    | 52    | 81,367 | 71,686                                                         | 63,716   |  |
| P16_P8002    | 58                    | 55                                                                                    | 52    | 81,368 | 71,340                                                         | 64,419   |  |
| P16_P8003    | 58                    | 54                                                                                    | 53    | 81,368 | 71,664                                                         | 64,392   |  |
| P16_P9001    | 58                    | 55                                                                                    | 54    | 80,810 | 71,012                                                         | 63,654   |  |
| P16_P9003    | 58                    | 55                                                                                    | 55    | 80,765 | 70,958                                                         | 64,305   |  |
| P16_P9010    | 58                    | 55                                                                                    | 54    | 80,810 | 70,464                                                         | 63,513   |  |
| P16_P9020    | 58                    | 55                                                                                    | 54    | 80,810 | 70,910                                                         | 63,652   |  |
| P16_P9030    | 58                    | 56                                                                                    | 54    | 80,810 | 71,683                                                         | 65,428   |  |



## Appendix III Watershed Analysis Report



The Forestry Corp. Project Number: P445 For additional information, please contact: The Forestry Corp. Suite 101, 11710 Kingsway Avenue Edmonton, AB T5G 0X5 (780) 452-5878 www.forcorp.com

 $\label{eq:silver_projects_P445_MDFP_DFMP_TSA_general_Documents_TSA_MDFP_TSA_2007-05-30.doc$