

Yield Curve Documentation

2007-2016 Detailed Forest Management Plan

February 28, 2007

EXECUTIVE SUMMARY

Millar Western Forest Products Ltd. holds a Forest Management Agreement encompassing two Forest Management Units, W11 and W13. Together, these FMUs form the Defined Forest Area.

In preparation for the timber supply analysis that will be conducted as part of their 2007-2016 Detailed Forest Management Plan submission, The Forestry Corp. has developed a series of yield curves for Millar Western's managed landbase.

This report documents the development of yield curves and ancillary analyses required for preparation of the plan.

Table Of Contents

EXEC	UTIVE SUMMARY	I
1.	BACKGROUND	1
1.1	Overview	1
1.2	PAST PLANS	1
1.	2.1 FMU W11	
1.	2.2 FMU W13	
1.3	THE CURRENT (2007-2016) DFMP	4
1.4	TERMS OF REFERENCE	
1.5	YIELD CURVE DEVELOPMENT	7
1.6	A NOTE REGARDING YIELD CURVE DEVELOPMENT	8
2.	STRATIFICATION	9
2.1	Overview	9
2.2	Identifying Forested Polygons	
2.3	SELECTING A DEFINING LAYER	11
2.	3.1 Creating Composite Layers	
2.4	ASSIGNING A DFMP YIELD STRATUM TO THE DEFINING LAYER	14
2.	4.1 Species Group	
	4.2 Broad Cover Group	
	4.3 Extended Strata	
2.	4.4 DFMP Yield Strata	17
3.	PLOT ATTRIBUTE ASSIGNMENT AND VOLUME COMPILATION	
3. 3.1	PLOT ATTRIBUTE ASSIGNMENT AND VOLUME COMPILATION OVERVIEW	
		19
3.1	Overview	
3.1 3.2	Overview Data Sources	
3.1 3.2 3.3	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment	
3.1 3.2 3.3 3.4	Overview Data Sources Plot Attribute Assignment Deletions	
3.1 3.2 3.3 3.4 3.5	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment	
3.1 3.2 3.3 3.4 3.5 3.6	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION	
3.1 3.2 3.3 3.4 3.5 3.6 4.	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation	
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview	
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview Landbase Summaries	
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview Landbase Summaries Distribution of Data.	
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3 4.4	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview Landbase Summaries Distribution of Data Landbase Reconciliation	
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3 4.4 4.5	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation Volume Compilation Volume Summaries AND RECONCILIATION Overview Landbase Summaries Distribution of Data Landbase Reconciliation Plot Reconciliation	19 19 20 21 23 25 29 29 29 29 30 30 38 39 43
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3 4.4 4.5 5.	Overview	19 19 20 21 23 25 29 29 29 30 30 38 39 43
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3 4.4 4.5 5. 5.1 5.2	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview Landbase Summaries Distribution of Data Landbase Reconciliation Plot Reconciliation BASE YIELD CURVES, FMU W11 Overview	19 19 20 21 23 25 29 29 29 29 30 38 39 43 43 44
3.1 3.2 3.3 3.4 3.5 3.6 4. 4.1 4.2 4.3 4.4 4.5 5. 5.1 5.2 5.	Overview Data Sources Plot Attribute Assignment Deletions DFMP Yield Stratum and Age Assignment Volume Compilation LANDBASE SUMMARIES AND RECONCILIATION Overview Landbase Summaries Distribution of Data Landbase Reconciliation Plot Reconciliation Plot Reconciliation Plot Reconciliation Overview Natural Stand Yield Curves	19 19 20 21 23 25 29 29 29 30 30 38 39 43 44 44 44

5	5.3.1	Background	
5	5.3.2	Yield Curve Development	
5.4	Co	MPOSITE YIELD CURVES	
5	5.4.1	Background	
5	5.4.2	Yield Curve Development	
6.	BAS	E YIELD CURVES, FMU W13	
6.1	O	/ERVIEW	
6.2		TURAL STAND YIELD CURVES	
ϵ	5.2.1	Background	
ϵ	5.2.2	Yield Curve Development	
6.3	M	ANAGED STAND YIELD CURVES	
ϵ	5.3.1	Background	
ϵ	5.3.2	Yield Curve Development	
		MPOSITE YIELD CURVES	
	5.4.1	Background	
Ć	5.4.2	Yield Curve Development	
7.	MOI	DIFIED YIELD CURVES, FMU W13	
7.1	Ov	ZERVIEW	59
7.2	Pn	NE SITE INDEX INCREASE YIELD CURVES	
7.3	TH	INNING YIELD CURVES	
7.4	A	HABASCA FLATS SELECTIVE LOGGING YIELD CURVES	
7.5	SU	BUNIT-SPECIFIC ASPEN YIELD CURVES	
8.	YIEI	LD CURVES FOR TIMBER SUPPLY ANALYSIS	
8.1	FN	1U W11	
8.2		IU W13	
9.	ADD	ITIONAL GROWTH AND YIELD ISSUES	
9.1	CI	ILL DEDUCTIONS	71
	9.1.1		
-		Results	
9.2		ECE SIZE CURVES	
9	9.2.1	Methods	
9	9.2.2	Results	
9.3	SP	ECIES COMPOSITION CURVES	
9	9.3.1	Methods	
9	9.3.2	Results	
9.4	Re	GENERATION LAG	
9	9.4.1	Methods	
9	9.4.2	Results	
10.	REF	ERENCES	
APPE	ENDIC	ES	

List of Tables

Table 1-1.	Yield strata used in the 2004 PFMP, FMU W11.	. 2
	Yield strata used in the 1997-2006 DFMP, FMU W13.	
	DFMP yield strata for the 2007-2016 DFMP.	
	Assignment of composite crown closure class.	
	Midpoint values of crown closure classes.	
	Assignment of species group.	
	Broad cover group assignment using deciduous and coniferous species percent	
	Rules for assigning DRULE based on BCG and species composition.	
	Rules for assigning CRULE based on BCG and species composition.	
	Assigning extended strata based DRULE, CRULE, BCG and species composition.	
	Conversion of extended strata to species strata.	
	Conversion of species strata to DFMP yield strata.	
Table 3-1.	Data sources used in yield curve development.	20
	Influential points by FMU, deletion type and reason for deletion	
	Reconciliation of the initial number of observations, number of deleted observations and fina	
	number of observations used in empirical yield curve development	
Table 3-4.	Rules for assigning DFMP yield strata to plots based on FMU, species stratum and density	
Table 3-5.	Number of eligible observations for empirical yield curve development by FMU and DFMP	
	yield stratum.	
Table 3-6.	Utilization limits for determining gross merchantable volume of individual trees.	25
	Total managed landbase area (ha) by DFMP yield stratum and stand type, FMU W11	
Table 4-2.	Total managed landbase area (ha) by DFMP yield stratum and stand type, FMU W13	30
Table 4-3.	Number and percent of observations by height class relative to the amount (area in ha) and	
	percent landbase, FMU W11.	31
Table 4-4.	Number and percent of observations by age class relative to the amount (area in ha) and	
	percent landbase, FMU W11.	
Table 4-5.	Number and percent of observations by defining layer class relative to the amount (area in ha)
	and percent natural stand landbase area, FMU W11.	33
Table 4-6.	Number and percent of observations by TPR class relative to the amount (area in ha) and	
	percent landbase, FMU W13.	34
Table 4-7.	Number and percent of observations by height class relative to the amount (area in ha) and	
	percent landbase, FMU W13.	35
Table 4-8.	Number and percent of observations by age class relative to the amount (area in ha) and	20
T 11 40	percent landbase, FMU W13.	
	Number and percent of observations by defining layer class relative to the amount (area in ha	
	and percent natural stand landbase area, FMU W13.	31
Table 4-10). Area differences (ha) between landbase version 9 and landbase version 12 by DFMP yield stratum and stand type, FMU W11.	20
Table 1 1	I. Area differences (ha) between landbase version 9 and landbase version 12 by DFMP yield	20
1 aute 4-1	stratum and stand type, FMU W13	20
Table 1 1'	2. Area (ha) and percent differences between landbase version 9 and landbase version 12 by	50
	DFMP yield stratum and stand type, Athabasca Flats, FMU W13	30
Table 4-13	3. Comparison between plot assignments based on landbase 9 versus landbase 12, FMUs W11	
1 4010 7-1.	and W13 combined.	
Table 4-14	4. Breakdown of plots used in yield curve development based on landbase 9 that are now	
	ineligible based on landbase 12.	40
Table 5-1.	Base DFMP yield curves, FMU W11	
-	• •	

Table 5-2.	Model form and model coefficients, base natural stand yield curves, FMU W11.	45
Table 5-3.	Model form and model coefficients, base managed stand yield curves, FMU W11	46
Table 5-4.	Total area (ha) of natural stands by DFMP yield stratum, FMU W11, for composite yield cur	ve
	development (based on landbase version 12).	47
Table 6-1.	Base DFMP yield curves, FMU W13	50
Table 6-2.	Leading coniferous and deciduous species as a function of DFMP yield stratum.	53
Table 6-3.	Model form and model coefficients, base natural stand yield curves, FMU W13	54
	Rules for assigning site type based on leading species site index.	
Table 6-5.	Average site index values used as inputs to the site-specific empirical yield curve model, base natural stand yield curves, FMU W13.	
Table 6-6.	Model form and coefficients, base managed stand yield curves, FMU W13	56
	Average site index values used as inputs to the site-specific empirical yield curve model, base	
	managed stand yield curves, FMU W13	57
Table 6-8.	Total area (ha) of natural stands by DFMP yield stratum and TPR, FMU W13, for composite	
	yield curve development (based on landbase version 12).	58
Table 7-1.	Modified DFMP yield curves, FMU W13.	60
Table 7-2.	Average natural stand site index by site type, calculated FGYA site index increase, and new	
	managed stand site index values for pine site index increase yield curves	61
Table 7-3.	Managed landbase area (ha) by TPR and stand type, PL stratum, FMU W13 (based on	
	landbase version 12).	61
Table 7-4.	Total managed landbase area (ha) and number of plots within the Athabasca Flats selective	
	logging area by pre-treatment DFMP yield stratum and eligibility (areas based on landbase	
	version 9).	63
Table 7-5.	Areas (ha) used for creating a composite natural stand yield curve, Athabasca Flats selecting	
	logging area, using landbase version 9.	
	Model form and model coefficients, subunit-specific aspen yield curves, FMU W13	65
Table 7-7.	Average site index values used as inputs to the site-specific empirical yield curve model, subunit-specific aspen curves, FMU W13.	66
Table 8-1.	Yield curves used in timber supply analysis, FMU W11, by stand type and DFMP yield	
	stratum.	68
Table 8-2.	Yield curves used in timber supply analysis, FMU W13, by stand type and DFMP yield	
	stratum.	69
Table 9-1.	Number of cull records and associated number of cutblocks by species group and FMU	72
Table 9-2.	Millar Western percent cull by species type, combined FMUs, for use in the 2007-2016	
	DFMP.	
	SRD percent cull by species type, FMU W11, for comparison purposes	
Table 9-4.	Number of plots used for fitting coniferous and deciduous piece size curves	74
	Model coefficients for piece size curves, FMU W11 and FMU W13	
	Age classes for percent species composition calculations by species type	
	Percent species composition by DFMP yield stratum and age class, FMU W11	
	Percent species composition by DFMP yield stratum and age class, FMU W13	
	Hierarchy and criteria for assigning regeneration status and management strategy	
). Rules for assigning regeneration lag to cutblocks.	
	. Calculated regeneration lag by FMU and broad cover group	82
Table 9-12	2. Number and area (ha) of cutblocks by management strategy and broad cover group, FMU	
	W11	82
Table 9-13	8. Number and area (ha) of cutblocks by management strategy and broad cover group, FMU	~
	W13.	82

List of Figures

Figure 2-1. Overview of DFMP yield stratum assignment process.	10
Figure 2-2. Rules for determining the defining layer.	11
Figure 6-1. Flow chart for natural stand yield curve development, FMU W13	52
Figure 9-1. Regeneration lag by management strategy and year of harvest for the conifer and mixedwa	ood
(C, CD, and DC) broad cover groups.	83
Figure 9-2. Regeneration lag by management strategy and year of harvest for the deciduous (D) broad	
cover group	84

1. Background

1.1 Overview

Millar Western Forest Products Ltd. (Millar Western) holds a Forest Management Agreement (FMA) encompassing two Forest Management Units (FMUs), W11 and W13. Together, these FMUs form the *Defined Forest Area*¹ (DFA).

In preparation for the *timber supply analysis* (TSA) that will be conducted as part of their 2007-2016 Detailed Forest Management Plan (DFMP) submission, The Forestry Corp. has developed a series of *yield curves* for Millar Western's *managed landbase*.

This document describes the methods used in yield curve development and presents the final results. Accompanying this document is a Regulated Forestry Professional (RFP) checklist derived from the Alberta Sustainable Resource Development (SRD) Forest Management Planning Standard, Version 4.1 (SRD 2006) relating to yield curve development and documentation deliverables.

1.2 Past Plans

Millar Western received tenure over FMU W13 in 1997, and has already developed one Detailed Forest Management Plan (DFMP) for the FMU (Millar Western 2000) for the 1997-2006 planning period. Forest Management Unit W11 was incorporated into Millar Western's DFA in

¹ Terms that are defined in the glossary will be shown in italics the first time they are presented in this document. The glossary is provided in Appendix I. To help clarify the relationship between types of volume, yield strata, yield curves, and landbase-related terms, a structure of terminology is also provided. See Appendix II.

2002. A Preliminary Forest Management Plan (PFMP) for this FMU was completed in 2004 (Millar Western 2004e).

1.2.1 FMU W11

Stratification

In the 2004 PFMP, six *yield strata* were defined for the FMU W11 managed landbase. Stratum assignment was based on layer 1 AVI attributes for all A, B, C and D density *stands*, with the following exceptions:

- Multistory stands with an A density overstory layer and a productive forested understory;
- Multistory stands with a B density overstory layer and a C or D density productive forested understory layer;
- Horizontal stands with a nonforested or nonproductive layer 1; or
- Horizontal stands with a forested layer 2 comprising > 50% of the polygon area.

In these cases, layer 2 AVI attributes were used to assign yield strata.

Yield strata were assigned based on *broad cover group*, crown closure class and leading conifer species (Table 1-1). Leading species was assigned based on percent cover. For white spruce types, total percent SW was calculated as (SW+FB); for aspen types, total percent AW was calculated as (AW+PB). Stands in pure conifer and mixedwood broad cover groups with black spruce as the leading conifer were assigned to the SB_ABCD *yield stratum*.

Larch and white birch-leading stands were considered part of the *unmanaged landbase*, for which no yield strata were assigned. Black spruce stands were also considered part of the unmanaged landbase, with the exception of ~60 ha of planned blocks in place at the time of PFMP development (Millar Western 2004d).

Table 1-1. Yield strata used in the 2004 PFMP, FMU W11.

Yield	Broad Cover	Leading Coniferous	Crown Closure	
Stratum	Group	Species	Class	Description
D_AB	D	n/a	AB	Pure deciduous - open
D_CD	D	n/a	CD	Pure deciduous - closed
MX_ABCD	DC/CD	not SB	ABCD	Mixedwood
SB_ABCD	C, CD, DC	SB	ABCD	Black spruce
C_AB	С	not SB	AB	Pure conifer - open
C_CD	С	not SB	CD	Pure conifer - closed

Yield Curve Development

One *yield curve* was empirically fit for each yield stratum in the 2004 PFMP. Each yield curve was fit using equations representing volume as a function of stand age. These equations were

used to represent both managed and *natural stands* within timber supply analysis. No other *stand types* (*e.g.*, *thinning*) were represented in timber supply analysis.

1.2.2 FMU W13

Stratification

For the 1997-2006 DFMP, six yield strata were defined in FMU W13 to classify stands in the managed landbase. Stratum assignment was based upon layer 1 (overstory) AVI attributes for all A, B, C and D density stands. Stands with less than 6% crown closure were assigned to strata based on layer 2 (understory) attributes.

Yield strata were assigned based on broad cover group and leading *species groups* (Table 1-2). Leading species group was assigned based on percent cover. For white spruce types, total percent SW was calculated as (SW+FB); for aspen types, total percent AW was calculated as (AW+PB).

White birch-leading deciduous and larch-leading coniferous or mixedwood stands were considered part of the unmanaged landbase, for which no strata were assigned.

Table 1-2.	Yield strata	used in the	1997-2006 DFMI	P, FMU W13.

	Broad		Crown	
Yield	Cover		Closure	
Stratum	Group	Leading Species	Class	Description
AW	D	AW%+PB%>=BW%	ABCD	Pure deciduous
PA	DC/CD	PL%>=SB%+SW%+FB%	ABCD	Pine leading mixedwood
SA	DC/CD	PL% <sb%+sw%+fb%< td=""><td>ABCD</td><td>Spruce leading mixedwood</td></sb%+sw%+fb%<>	ABCD	Spruce leading mixedwood
PL	С	PL%>=SB% and PL%>=SW%+FB% and LT%<=50	ABCD	Pine leading pure conifer
SB	С	SB%>PL% and SB%>SW%+FB% and LT%<=50	ABCD	Black spruce leading pure conifer
SW	С	SW%+FB%>PL% and SW%+FB%>=SB% and LT%<=50	ABCD	White spruce leading pure conifer

Yield Curve Development

A series of yield curves were developed for the 1997-2006 DFMP:

Natural Stand Yield Curves. *Natural stand yield curves* were developed for each yield stratum in the 1997-2006 DFMP. Volume as a function of age was empirically fit using TSP and PSP *plot* data. *TPR scaling* was used to represent the effects of site: the empirically-fit curve was assumed to represent medium TPR sites; the curve was then increased 33% upwards to represent good sites and 25% downwards to represent fair sites.

Managed Stand Yield Curves. *Managed stand yield curves* were developed for each yield stratum in the 1997-2006 DFMP. Managed stand yield curves were developed by increasing all TPR-scaled natural stand yield curves by 11% (15% to represent *fully stocked* stand conditions minus 4% to reflect losses to roads and landings).

Crop Plan Yield Curves. *Crop plan yield curves* were developed for the PL, SB and SW yield strata in the 1997-2006 DFMP. Yield curves were developed using Phase 3 volumes, modified

to reflect regenerated yields and thinning events in *crop plan* (density management) stands. TSP and PSP data were used to convert gross total (Phase 3) stand volumes to gross *merchantable stand volumes* for the plan.

Windfall Burn Yield Curves. *Windfall Burn yield curves* were developed for regenerating pine stands within the Windfall Burn boundary. Due to a lack of information on anticipated stand development, a modified natural stand yield curve was used to represent these post-fire pine stands. Medium TPR natural stand yield curves were reduced by 50% to reflect decreased gross merchantable volume production in these stands.

Thinning Yield Curves. Thinning yield curves were developed for all strata, with the exception of the AW yield stratum. Natural stand yield curves were modified to reflect volume removal and subsequent recovery. *Commercial thinning yield curves* were developed based on a scenario of 35% volume removal at 45 years, with a recovery to 90% of natural stand volume 20 years after thinning. *Salvage thinning yield curves* were developed based on a scenario of 33% volume removal at 90 years, with no recovery assumption (67% of natural stand volume at final harvest).

Aspen W5/W9 Yield Curves. Separate natural stand yield curves were developed for the W5 (now Whitecourt/Blue Ridge) and W9 (now McLeod/Virginia Hills) *subunits*, to reflect subunit-specific differences in productivity. Data were split by subunit. The same methods used to develop natural stand yield curves were used to develop TPR-scaled yield curves for each subunit.

Composite Yield Curves. Composite (area-weighted) yield curves for natural stands were developed for coniferous volume on the coniferous landbase (C, CD, and DC broad cover groups) and deciduous volume on the deciduous landbase (D broad cover group).

1.3 The Current (2007-2016) DFMP

Stratification

In consultation with Alberta SRD, Millar Western has revised the yield strata used in past plans. The main change for both FMUs was the separation of mixedwood yield strata by broad cover group (CD vs. DC). Another change was the inclusion of stratification rules for assigning yield strata to forested stands in the <u>unmanaged</u> landbase. The yield strata in FMU W11 were also renamed to parallel the FMU W13 yield strata naming conventions.

The term *DFMP yield strata* refers specifically to yield stratification used in the <u>current</u> (2007-2016) DFMP. DFMP yield strata are applied to all stands in the *forested landscape*.

DFMP yield stratum assignment was based on layer 1 (overstory), layer 2 (understory), or composite AVI attributes. Stratum assignment was primarily based on layer 1 AVI attributes, with the following exceptions:

• Nonforested overstory with forested understory (use understory AVI attributes);

- Multistory stands with an A, B or C density overstory layer, overstory height > 14 m and understory height at least 2/3 of the overstory height (use composite AVI attributes); or
- Multistory stands with an A density overstory layer and B, C, or D density understory layer (use understory AVI attributes).
- Horizontal stands with a forested layer 2 comprising > 50% of the polygon area (use layer 2 attributes).

The layer used for assigning DFMP yield strata is referred to as the *defining layer*.

DFMP yield strata were assigned based on broad cover group, species composition and crown closure class from the defining layer (Table 1-3). Yield stratification is a much more complex process than shown here. Full details on DFMP yield stratum assignment are provided in Chapter 2.

For the 2007-2016 DFMP, the BW DFMP yield stratum is considered part of the managed landbase, while the LT DFMP yield stratum is considered part of the unmanaged landbase. Larch is an acceptable species component in stands assigned to other DFMP yield strata. In FMU W11, the SB DFMP yield stratum is considered part of the unmanaged landbase, but black spruce is considered an acceptable species component in stands assigned to other W11 DFMP yield strata.

	DFMP	Broad	Leading	Leading	Crown	
	Yield	Cover	Coniferous	Deciduous	Closure	
FMU	Stratum	Group	Species Group ¹	Species Group ¹	Class	Description
W11	AW_AB	D	n/a	AW, PB	AB	Aspen or poplar leading deciduous stand, open crown closure
	AW_CD	D	n/a	AW, PB	CD	Aspen or poplar leading deciduous stand, closed crown closure
	BW	D	n/a	BW	ABCD	Birch leading deciduous stand
	APAS_ABCD	DC	n/a	n/a	ABCD	Deciduous leading mixedwood stand
	PASA_ABCD	CD	n/a	n/a	ABCD	Coniferous leading mixedwood stand ²
	LT	С	LT	n/a	ABCD	Larch leading conifer stand
	PL_AB	С	PL	n/a	AB	Pine leading conifer stand, open crown closure
	PL_CD	С	PL	n/a	CD	Pine leading conifer stand, closed crown closure
	SB	С	SB	n/a	ABCD	Black spruce leading conifer stand
	SW_AB	С	SW	n/a	AB	White spruce leading conifer stand, open crown closure
	SW_CD	С	SW	n/a	CD	White spruce leading conifer stand, closed crown closure
W13	AW	D	n/a	AW, PB	ABCD	Aspen or poplar leading deciduous stand
	BW	D	n/a	BW	ABCD	Birch leading deciduous stand
	AP	DC	PL	n/a	ABCD	Deciduous leading pine mixedwood
	AS	DC	SW, SB, FB	n/a	ABCD	Deciduous leading spruce mixedwood
	PA	CD	PL	n/a	ABCD	Coniferous leading pine mixedwood
	SA	CD	SW, SB, FB	n/a	ABCD	Coniferous leading spruce mixedwood
	LT	С	LT	n/a	ABCD	Larch leading conifer stand
	PL	С	PL	n/a	ABCD	Black spruce leading conifer stand
	SB	С	SB	n/a	ABCD	Pine leading conifer stand
	SW	С	SW, FB	n/a	ABCD	White spruce leading conifer stand

Table 1-3. DFMP yield strata for the 2007-2016 DFMP.

¹Assignment of leading species group is described in Chapter 2.

² Includes a small area of poplar-leading pine mixedwood.

Yield Curve Development

A series of yield curves were developed for the 2007-2016 DFMP:

Base Natural Stand Yield Curves. Base natural stand yield curves were developed for each DFMP yield stratum. In FMU W11, volume as a function of age was empirically fit using TSP and PSP data. In FMU W13, volume as a function of AVI-based *site index* and age was empirically fit using TSP and PSP data. Average AVI-based site index for leading conifer and deciduous species were inserted into these equations to develop *site-specific* yield curves for fair, medium and good *site types*.

Base Managed Stand Yield Curves. Base managed stand yield curves were developed for each DFMP yield stratum. Base managed stand yield curves were developed using data from natural stands with a C or D density crown closure class as a proxy for fully stocked natural stands. The same methods used for fitting base natural curves were applied to develop base managed curves.

Base Composite Yield Curves. Base composite (area-weighted) yield curves for natural stands were developed for natural stands in the managed landbase. Five area-weighted curves were developed for natural stands for each FMU: four to represent each broad cover group (D, DC, CD, and C) and one overall composite for the coniferous landbase (DC, CD and C combined).

Site Index Increase Yield Curves. *Site index increase yield curves* were developed for the FMU W13 PL DFMP yield stratum, to reflect the effect of management on pine volume yield. Average site index inputs used to create site-specific natural stand PL yield curves were increased using results from a Foothills Growth and Yield Association study (Dempster 2004). These increased site indices were used as inputs to the PL natural stand yield curve equation, to create site-specific site index increase yield curves.

Thinning Yield Curves. Thinning yield curves were developed for the PL and SB DFMP yield strata in FMU W13. Natural stand yield curves were modified to reflect volume removal and subsequent recovery. Commercial thinning yield curves were developed based on a scenario of 35% volume removal at 45 years, with a recovery to 90% of natural stand volume after thinning after 15 years. Salvage thinning yield curves were developed based on a scenario of 33% volume removal at 90 years, with no recovery assumption (67% of natural stand volume at final harvest).

Athabasca Flats Selective Logging Yield Curves. Yield curves were developed for stands in the *Athabasca Flats* area that have been harvested using selective logging methods. Because this area was comprised of a number of different DFMP yield strata, a composite natural stand yield curve was developed using area-weighting of natural stand yield curves. This composite curve was then localized using plot data to create a pre-treatment Athabasca Flats natural stand yield curve. Plot data were then used to calculate the percent volume removed by selective logging, which was applied to the localized natural stand yield curve to create a post-treatment Athabasca Flats yield curve. No post-treatment recovery assumptions were applied to this curve.

Subunit-Specific Aspen Yield Curves. Separate *subunit-specific aspen yield curves* for natural stands were developed for the Whitecourt/Blue Ridge and McLeod/Virginia Hills subunits of

FMU W13, to reflect subunit-specific differences in productivity. Data were split by subunit. The same methods used to develop natural stand yield curves were used to develop site-specific yield curves for each subunit.

1.4 Terms of Reference

Millar Western's Terms of Reference for the 2007-2016 DFMP (Millar Western 2005a) provides the context for yield curve development. The Terms of Reference states that:

The general yield projection approach is:

- Standing timber yield curves will be developed following the same process used for the 1997-2006 DFMP but updated with additional new temporary and permanent sample plot (TSP and PSP) information.
- Yield curves for regenerating stands will be developed either:
- 1. To represent fully stocked natural stands, using the same scaled empirical yield curve process used for the 1997-2006 DFMP but updated for new plot data, or;
- 2. According to Crop Plans, using the same curves as for the 1997-2006 DFMP.

Millar Western's intention under the Terms of Reference was to define a baseline expectation for yield curve development. Where Millar Western could improve projections using alternate methods, Millar Western has done so. All changes to methods from the 1997-2006 DFMP, and justifications for those changes, are presented in this document. Where no improvement over previous methods was evident, the 1997-2006 DFMP procedures were followed.

1.5 Yield Curve Development

DFMP yield strata form the basis for the development of a number of yield curves used in timber supply analysis for the 2007-2016 DFMP. Each DFMP yield stratum has one or more associated yield curves for both natural stands and *managed stands*.

In this document, the term yield stratum is not used interchangeably with yield curve². A yield curve is a graphical representation of a predictive *yield equation* that presents yield (volume, *piece size*) as a function of stand age. Yield strata are a set of strata with associated yield projections (yield curves and/or *yield tables*). Each DFMP yield stratum can have one or more associated yield curves. These can be *base yield curves* and/or *modified yield curves*.

² The term yield curve is used to represent a set of three separate curves: a volume-age curve for conifer volume, a volume-age curve for deciduous volume, and a volume-age curve for total volume.

In addition, several types of *strata* are discussed, and while these are related, they are not interchangeable. Stratification is a classification scheme used to define *polygons* within the *gross landbase*. For example, there are *extended strata*, *BAP strata*, *species strata* and DFMP yield strata. DFMP yield strata are the set of strata used in the 2007-2016 DFMP and are the only strata to use the term "yield". Yield projections that were developed for the 2007-2016 DFMP are specific to DFMP yield strata.

The full complement of yield curves that were developed for the 2007-2016 DFMP are described in Chapters 5, 6, and 7.

1.6 A Note Regarding Yield Curve Development

Development of yield curves for use in timber supply analysis generally occurs in conjunction with the landbase development process. Development of yield curves cannot be held until landbase development is complete, particularly since landbase and yield curves must be submitted to the government for review around the same time.

The yield curves presented here were developed using information from version 9 of the Millar Western landbase. This landbase was selected since significant changes were not anticipated beyond this point. The final landbase submission is based on landbase version 12. Therefore it is important to note the following:

- All yield curve development was based on landbase version 9 except for base composite yield curves. Athabasca Flats composite yield curves were developed using information from landbase version 9.
- Base composite yield curves were developed using areas from landbase version 12.
- All landbase area summaries presented in this document are based on landbase version 12.
- Landbase areas included in yield tables were obtained from landbase version 12.
- A reconciliation between landbase 9 and 12, and an examination of the effects on plot assignment and eligibility for yield curve development is provided in Sections 4.4 and 4.5.

2. Stratification

2.1 Overview

Stratification is used to group a large number of polygons with varied attribute information into units meaningful for management. Predictions of yield for individual stands over time are required for timber supply analysis. Volumes are not predicted on an individual stand basis; rather, an average yield is applied, based on which yield stratum the stand is classified to (stratum-level yield prediction). As such, stratification is important to ensure that stands are grouped based on similarities relevant to timber yield and planned management practices.

DFMP yield strata are the basic units for forest management in the 2007-2016 DFMP.

Plot data (*observations*) must be assigned to a DFMP yield stratum for empirical yield curve development. Plots were spatially intersected with the landbase in order to objectively assign this information (see Chapter 3). This section describes how DFMP yield strata were assigned to the *landbase polygons* used in spatial intersection.

Note that while this section describes how the landbase is classified into DFMP yield strata, it does not discuss how the landbase is classified into the managed vs. unmanaged landbase, or how stand type (natural, managed, thinned, *etc.*) is assigned. For more information on these aspects of landbase classification, please refer to Millar Western (2007).

Figure 2-1 provides an overview of the process for assigning DFMP yield strata. This process is explained in detail in the sections that follow.

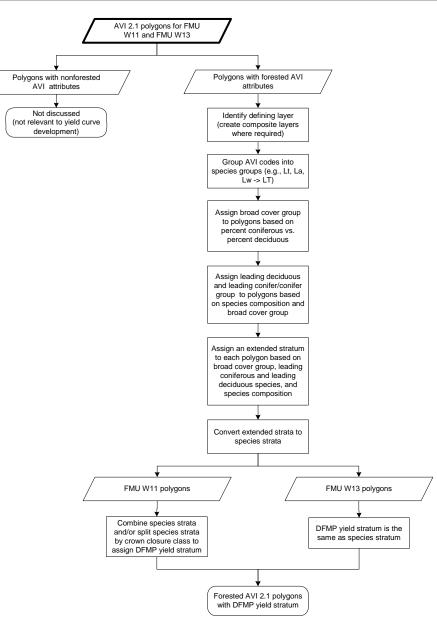


Figure 2-1. Overview of DFMP yield stratum assignment process.

2.2 Identifying Forested Polygons

Stratification was based on Alberta Vegetation Inventory (AVI) 2.1 polygon attributes (AFLW 1991). The first step in assigning DFMP yield strata was to identify the polygons of interest. DFMP yield strata were assigned to forested polygons only, since these are the areas that would potentially be managed for timber. Polygons with a natural or anthropogenic nonforested code in the defining layer were deemed nonforested, and were not included in the DFMP yield stratum assignment process. All other polygons were deemed forested and were assigned to a DFMP yield stratum as described in the following sections.

2.3 Selecting a Defining Layer

In order to classify forested polygons, a defining layer (layer used for stratification) was identified. The defining layer for a polygon could be the overstory layer, the understory layer, or a combination of the two (*composite layer*). The intent of selecting a defining layer based on attributes of one or more chosen layers was to best represent the forest being managed.

The defining layer was selected based on *AVI polygon* attributes. The AVI attributes used to determine the defining layer include stand structure type (single storied, complex, horizontal, or multistoried), structure value (for horizontal stands, the proportion of area in AVI layer 1 vs. AVI layer 2), height, crown closure class (density), and presence of forested species. A decision key used to assign the defining layer is presented in Figure 2-2.

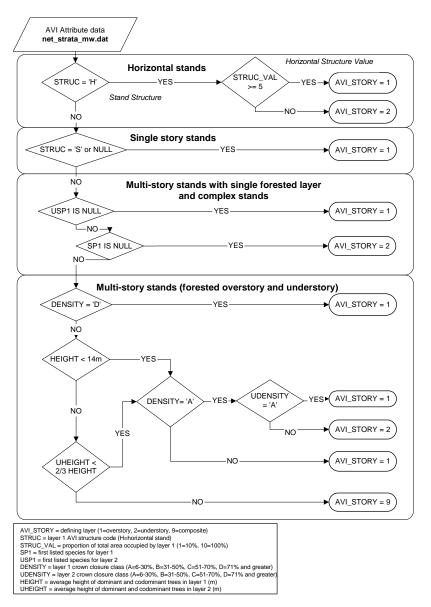


Figure 2-2. Rules for determining the defining layer.

2.3.1 Creating Composite Layers

Composite attributes had to be created for polygons with a composite defining layer. Composite layers were developed by combining AVI 2.1 overstory and understory attributes, generally involving some form of weighting. The following sections describe how composite attributes were developed for the polygons requiring a composite defining layer.

Crown Closure Class

Composite crown closure class was assigned based on overstory and understory crown closure class (Table 2-1). The rules were:

- 1. Where the overstory and understory were <u>different</u> crown closure classes, the denser of the two was selected.
- 2. Where the overstory and understory were either a) both B crown closure class or b) both C crown closure class, crown closure class was increased by one level (B -> C or C -> D).
- 3. Where the overstory and understory were either a) both A crown closure class or b) both D crown closure class, composite crown closure class stayed the same.

 Table 2-1. Assignment of composite crown closure class.

Overstory					
Crown	Uı	nderstory C	rown Closu	ire	
Closure	А	В	С	D	
А	А	В	С	D	
В	В	С	С	D	
С	С	С	D	D	
D	D	D	D	D	

Height

Composite height for the defining layer was developed by weighting both the understory and overstory heights by their respective crown closure classes. To do so, the range of crown closure percent was converted to a midpoint value for each crown closure class (Table 2-2).

Table 2-2. Midpoint values of crown closure classes.

Crown Closure		
Class	Range	Midpoint
А	6-30%	18
В	31-50%	40
С	51-70%	60
D	71-100%	85

The composite height was then calculated as follows:

$$Height_{composite} = \frac{\left(Height_{overstory} * CCMidpt_{overstory}\right) + \left(Height_{understory} * CCMidpt_{understory}\right)}{\left(CCMidpt_{overstory} + CCMidpt_{understory}\right)}$$

Where: *Height_{composite}* = composite layer height in m

*Height*_{overstory} = height of the AVI 2.1 overstory layer in m

*Height*_{understory} = height of the AVI 2.1 understory layer in m

*CCMidpt*_{overstory} = midpoint of the overstory layer's crown closure class

*CCMidpt*_{understory} = midpoint of the understory layer's crown closure class

Composite height was then rounded to the nearest meter.

Origin

The origin of the oldest layer was used as the origin of the composite layer.

Timber Productivity Rating

Within the AVI, *timber productivity rating* (TPR) was originally assigned to each layer based on the height and age of the leading species (species 1). TPR reflects the potential of the site to grow timber, therefore the most productive TPR was assigned to the composite layer.

Species Composition

The species composition for each layer was weighted using the midpoint of the crown closure class and summed to provide the overall percentages for each species; *e.g.*, for white spruce:

$$PctSW_{composite} = \frac{\left(PctSW_{overstory} * CCMidpt_{overstory}\right) + \left(PctSW_{understory} * CCMidpt_{understory}\right)}{\left(CCMidpt_{overstory} + CCMidpt_{understory}\right)}$$

Where: *PctSW_{composite}* = composite percent SW (10-percent AVI class, no rounding)

*PctSW*_{overstory} = percent SW, AVI 2.1 overstory layer (10-percent AVI class)

*PctSW*_{understory} = percent SW, AVI 2.1 understory layer (10-percent AVI class)

*CCMidpt*_{overstory} = midpoint of the overstory layer's crown closure class

*CCMidpt*_{understory} = midpoint of the understory layer's crown closure class

The species were then ranked in order of descending percent from species 1 to species 6. If two species had the same composite percent, species present in layer 1 took priority over those in

layer 2, and the original species order took precedence where both species were present in the same layer. Species percents were not rounded.

2.4 Assigning a DFMP Yield Stratum to the Defining Layer

This section describes the process by which the attributes <u>from the defining layer</u> were used to assign DFMP yield strata. In order to assign DFMP yield strata, a series of steps were involved. First, AVI species were grouped into species groups, and broad cover group was assigned. Using this information, extended strata were assigned; these were combined to form species strata, which were then either combined, split or directly assigned to DFMP yield strata.

2.4.1 Species Group

For the purposes of amalgamating similar species, individual species (AVI species codes) were combined into species groups within *species type* (deciduous and coniferous) (Table 2-3).

Species Type	Species Group	AVI Species Codes	Description
Deciduous	AW	A, Aw	Trembling aspen
	BW	Bw	White birch
	PB	Pb	Balsam poplar
Coniferous	FB	Fb, Fa	True firs
	FD	Fd	Douglas-fir
	LT	Lt, La, Lw	Larches
	PL	P, Pl, Pj, Pa, Pf	Pines
	SB	Sb	Black spruce
	SW	Sw, Se	White and Engelmann spruce

Table 2-3. Assignment of species group.

2.4.2 Broad Cover Group

Percent deciduous and percent coniferous were obtained by summing the percent composition within species types. Broad cover group was assigned using the rules outlined in Table 2-4.

Table 2-4. Broad cover group assignment using deciduous and coniferous species percent.

Broad Cover Group	Percent Deciduous	Percent Coniferous	Description
D	≥ 80	< 20	Deciduous
DC^1	50-79	21-50	Deciduous-leading mixedwood
CD^1	21-50	50-79	Coniferous-leading mixedwood
С	< 20	≥ 80	Coniferous

¹ A 50/50 split is assigned to CD if SP1 is coniferous and DC if SP1 is deciduous.

2.4.3 Extended Strata

Extended strata are defined in the Alberta Forest Management Planning Standard (SRD 2006). In order to assign extended strata, an intermediary step was required. This step identified leading deciduous species (DRULE) and the leading coniferous species or combination of coniferous species (CRULE) as a function of broad cover group and species composition. The first listed deciduous species was deemed the leading deciduous species. The assignment of leading

coniferous species was more complex, and was based on relative percent composition by species. The rules for assignment are presented in Table 2-5 and Table 2-6.

Table 2-5. Rules for assigning DRULE based on BCG and species composition.

DRULE	Description	Selection Criteria
'AW_LEAD'	Aspen leading deciduous	$HARDPCT > 0$ and $AW_ORD < BW_ORD$ and $AW_ORD < PB_ORD$
'BW_LEAD'	White birch leading deciduous	$HARDPCT > 0$ and $BW_ORD < AW_ORD$ and $BW_ORD < PB_ORD$
'PB_LEAD'	Balsam poplar leading deciduous	$HARDPCT > 0$ and $PB_ORD < AW_ORD$ and $PB_ORD < BW_ORD$
'NO_D'	No deciduous present	HARDPCT = 0

Table 2-6. Rules for assigning CRULE based on BCG and species composition.

CRULE	Description	Selection Criteria
'FBFD_LEAD_MW'	True fir or Douglas-fir	$C_CODE = ('DC', 'CD')$ and $(((FB_PCT + FD_PCT) > PL_PCT)$ and
	leading conifer in	$(FB_PCT + FD_PCT) > (SB_PCT + LT_PCT)$ and $(FB_PCT + PCT)$
	mixedwood	FD_PCT > SW_PCT) or (<i>LEAD_CON</i> = ('FB', 'FD') and (<i>FB_PCT</i> +
		FD_PCT >= PL_PCT and $(FB_PCT + FD_PCT)$ >= $(SB_PCT + FD_PCT)$ >= $(SB_PCT + FD_PCT)$ = (SB_PCT) = $(SB_PCT + FD_PCT)$ = $(SB_PCT + FD_PCT)$ = (SB_PCT) = $(SB$
		LT_PCT) and $(FB_PCT + FD_PCT) \ge SW_PCT)$)
'PL LEAD MW'	Pine leading conifer in	$C \ CODE = ('DC', 'CD') \text{ and } ((PL \ PCT > (FB \ PCT + FD \ PCT)) \text{ and } (PL \ PCT > (FB \ PCT + FD \ PCT))$
	mixedwood	$PL_PCT > (SB_PCT + LT_PCT)$ and $PL_PCT > SW_PCT$) or
		(LEAD CON = 'PL' and $PL_PCT >= (FB_PCT + FD_PCT)$ and PL_PCT
		$>= (SB_PCT + LT_PCT)$ and $PL_PCT >= SW_PCT)$
'SBLT LEAD MW'	Black spruce or larch	$C_CODE = ('DC', 'CD') \text{ and } (((SB_PCT + LT_PCT) > (FB_PCT + LT_PCT)))$
SDET_EERD_MW	leading conifer in	FD_PCT) and $(SB_PCT + LT_PCT) > PL_PCT$ and $(SB_PCT + LT_PCT) > PL_PCT) > PL_PCT > PL_PCT) > PL_PCT > PL_PCT > PL_PCT) > PL_PCT > PL_PCT > PL_PCT) > PL_PCT >$
	mixedwood	LT_PCT) > SW_PCT) or ($LEAD_CON$ = ('SB', 'LT') and (SB_PCT +
	linxeawood	LT_PCT >= (FB_PCT + FD_PCT) and (SB_PCT + LT_PCT) >=
		PL_PCT and $(SB_PCT + LT_PCT) \ge SW_PCT)$
'SW LEAD MW'	White spruce leading conifer	$C_{CODE} = ('DC', 'CD')$ and $((SW_PCT > (FB_PCT + FD_PCT))$ and
	in mixedwood	$SW_PCT > PL_PCT$ and $SW_PCT > (SB_PCT + LT_PCT))$ or
	III IIIXedwood	(LEAD CON = 'SW' and SW PCT >= (FB PCT+FD PCT) and SW PCT
		$(LEAD_CON = SW and SW_PCT \ge (IB_PCT + LT_PCT)))$
'FB LEAD'	True fir leading conifer in	$C_{CODE} = ('C', 'D')$ and $((FB_PCT > FD_PCT \text{ and } FB_PCT > LT_PCT)))$
TD_LEAD	pure stand	and $FB_PCT > PL_PCT$ and $FB_PCT > SB_PCT$ and $FB_PCT >$
	pure stand	SW_PCT) or (<i>LEAD_CON</i> = 'FB' and <i>FB_PCT</i> >= <i>FD_PCT</i> == <i>FD_P</i>
		SW_{PCT} of $(LEAD_{CON} - PB$ and $PB_{PCT} >= PD_{PCT}$ and PB_{PCT} and FB_{PCT} and $FB_{PCT} >= PL_{PCT}$ and $FB_{PCT} >= SB_{PCT}$ and
	Develop fin looding conifer	$\frac{FB_PCT >= SW_PCT)}{C_{CODE} = (C D) \operatorname{and} ((ED_PCT > EB_PCT \text{ and } ED_PCT > LT_PCT)}$
'FD_LEAD'	Douglas-fir leading conifer	$C_CODE = ('C', 'D') \text{ and } ((FD_PCT > FB_PCT \text{ and } FD_PCT > LT_PCT)$
	in pure stand	and FD_PCT > PL_PCT and FD_PCT > SB_PCT and FD_PCT >
		SW_PCT) or (<i>LEAD_CON</i> = 'FD' and <i>FD_PCT</i> $> FB_PCT$ and
		$FD_PCT >= LT_PCT$ and $FD_PCT >= PL_PCT$ and $FD_PCT >=$
		<i>SB_PCT</i> and <i>FD_PCT</i> >= <i>SW_PCT</i>))
'LT_LEAD'	U 1	$C_CODE = ('C', 'D')$ and $((LT_PCT > FB_PCT \text{ and } LT_PCT > FD_PCT)$
	stand	and <i>LT_PCT</i> > <i>PL_PCT</i> and <i>LT_PCT</i> > <i>SB_PCT</i> and <i>LT_PCT</i> >
		SW_PCT) or (<i>LEAD_CON</i> = 'LT' and <i>LT_PCT</i> >= <i>FB_PCT</i> and <i>LT_PCT</i>
		$>= FD_PCT$ and $LT_PCT >= PL_PCT$ and $LT_PCT >= SB_PCT$ and
		$LT_PCT \ge SW_PCT))$
'PL_LEAD'	Pine leading conifer in pure	$C_CODE = ('C', 'D')$ and $((PL_PCT > FB_PCT \text{ and } PL_PCT > FD_PCT)$
	stand	and <i>PL_PCT</i> > <i>LT_PCT</i> and <i>PL_PCT</i> > <i>SB_PCT</i> and <i>PL_PCT</i> >
		SW_PCT) or (<i>LEAD_CON</i> = 'PL' and <i>PL_PCT</i> >= <i>FB_PCT</i> and <i>PL_PCT</i>
		$>= FD_PCT$ and $PL_PCT >= LT_PCT$ and $PL_PCT >= SB_PCT$ and
		$PL_PCT \ge SW_PCT))$
'SB_LEAD'	Black spruce leading conifer	$C_CODE = ('C', 'D')$ and $((SB_PCT > FB_PCT \text{ and } SB_PCT > FD_PCT$
	in pure stand	and $SB_PCT > LT_PCT$ and $SB_PCT > PL_PCT$ and $SB_PCT >$
		SW_PCT) or (<i>LEAD_CON</i> = 'SB' and $SB_PCT \ge FB_PCT$ and SB_PCT
		$>= FD_PCT$ and $SB_PCT >= LT_PCT$ and $SB_PCT >= PL_PCT$ and
		$SB_PCT \ge SW_PCT))$
'SW_LEAD'	White spruce leading conifer	$C_CODE = ('C', 'D')$ and $((SW_PCT > FB_PCT \text{ and } SW_PCT > FD_PCT)$
_	in pure stand	and SW_PCT > LT_PCT and SW_PCT > PL_PCT and SW_PCT >
		SB_PCT) or (<i>LEAD_CON</i> = 'SW' and $SW_PCT >= FB_PCT$ and
		$SW_PCT >= FD_PCT$ and $SW_PCT >= LT_PCT$ and $SW_PCT >=$
		PL_PCT and $SW_PCT \ge SB_PCT$))
'NO C'	No coniferous present	SOFTPCT = 0
		~~

Based on CRULE, DRULE, broad cover group and species composition, forested polygons were then assigned to an extended stratum (Table 2-7).

Table 2-7. Assigning extended strata based DRULE, CRULE, BCG and species composition.

STRATA_SRD	Description	Selection Criteria
'D1'	Pure aspen	$C_CODE = 'D' \text{ and } AW_PCT \ge 9$
'D2'	Aspen leading with poplar	$C_CODE = 'D'$ and $DRULE = 'AW$ LEAD' and $AW_PCT < 9$ and $PB_PCT > 1$
'D3'	Aspen leading without poplar	$C_CODE = 'D' \text{ and } DRULE = 'AW LEAD' \text{ and } AW_PCT < 9 \text{ and } PB_PCT <= 1$
'D4'	Poplar leading	$C_{CODE} = 'D' \text{ and } DRULE = 'PB LEAD'$
D5'	Birch leading	$C_CODE = 'D' \text{ and } DRULE = 'BW LEAD'$
DC1'	Aspen/white spruce	$C_CODE = 'DC'$ and $DRULE = 'AW$ LEAD' and $CRULE = 'SW$ LEAD MW'
DC2'	Aspen/pine	$C_{CODE} = 'DC' and DRULE = 'AW LEAD' and CRULE = 'PL LEAD MW'$
DC3'	Aspen/black spruce	$C_CODE = 'DC'$ and $DRULE = 'AW$ LEAD' and $CRULE = 'SBLT$ LEAD MW'
DC4'	Aspen/fir	$C_CODE = 'DC'$ and $DRULE = 'AW$ LEAD' and $CRULE = 'FBFD$ LEAD MW'
DC5'	Poplar/white spruce	$C_{CODE} = 'DC' \text{ and } DRULE = 'PB_{LEAD'} \text{ and } CRULE = 'SW_{LEAD_{MW'}}$
DC6'	Poplar/pine	$C \ CODE = 'DC' \text{ and } DRULE = 'PB \ LEAD' \text{ and } CRULE = 'PL \ LEAD \ MW'$
DC7'	Poplar/black spruce	$C_CODE = 'DC'$ and $DRULE = 'PB$ LEAD' and $CRULE = 'SBLT$ LEAD MW'
DC8'	Poplar/fir	$C_{CODE} = 'DC' and DRULE = 'PB LEAD' and CRULE = 'FBFD LEAD MW'$
DC9'	Birch/white spruce	$C_{CODE} = 'DC' and DRULE = 'BW LEAD' and CRULE = 'SW LEAD MW'$
DC10'	Birch/pine	$C_{CODE} = 'DC' and DRULE = 'BW LEAD' and CRULE = 'PL LEAD MW'$
DC11'	Birch/black spruce	$C_{CODE} = 'DC' and DRULE = 'BW LEAD' and CRULE = 'SBLT LEAD MW'$
DC12'	Birch/fir	$C_{CODE} = 'DC' and DRULE = 'BW LEAD' and CRULE = 'FBFD LEAD MW'$
CD1'	White spruce/aspen	$C_{CODE} = 'CD' and CRULE = 'SW LEAD MW' and DRULE = 'AW LEAD'$
CD2'	White spruce/poplar	$C_{CODE} = CD' and CRULE = 'SW_{LEAD} MW' and DRULE = 'AW_{LEAD}'$
CD3'	White spruce/birch	$C_{CODE} = CD' and CRULE = 'SW_LEAD' MW' and DRULE = 'IB_LEAD' C_CODE = 'CD' and CRULE = 'SW_LEAD MW' and DRULE = 'BW_LEAD'$
CD4'	Pine/aspen	$C_{CODE} = 'CD' and CRULE = 'PL LEAD MW' and DRULE = 'AW LEAD'$
CD5'	Pine/poplar	$C_{CODE} = 'CD' and CRULE = 'PL LEAD MW' and DRULE = 'PB LEAD'$
CD6'	Pine/birch	C = CODE = CD' and CRULE = 'PL LEAD MW' and DRULE = 'PB LEAD'
CD7'	Black spruce/aspen	$C_{CODE} = CD' and CRULE = 'IE_ELAD_MW and DRULE = 'BW_ELAD'C_CODE = 'CD' and CRULE = 'SBLT LEAD MW' and DRULE = 'AW LEAD'$
CD8'	Black spruce/poplar	$C_{CODE} = CD' and CRULE = SBLT_LEAD_MW and DRULE = AW_LEAD'$
CD8 CD9'	Black spruce/poplal Black spruce/birch	$C = CODE = CD' and CRULE = SBLT_LEAD_MW and DRULE = FB_LEAD'$
CD10'	Fir/aspen	$C_{CODE} = CD' and CRULE = 'FBFD LEAD MW' and DRULE = 'AW LEAD'$
CD10 CD11'	Fir/poplar	$C_{CODE} = CD' and CRULE = FBFD_LEAD_MW and DRULE = AW_LEAD'$
CD12'	Fir/birch	$C_{CODE} = CD' and CRULE = FBFD_LEAD_MW and DRULE = FB_LEAD'$
CD12	Pure white spruce	
C1 C2'	White spruce leading with pine	$C_CODE = 'C' \text{ and } SW_PCT >= 9$
C3'	1 0 1	$C_CODE = 'C' \text{ and } CRULE = 'SW_LEAD' \text{ and } SW_PCT < 9 \text{ and } PL_PCT > 1$ $C_CODE = 'C' \text{ and } CRULE = 'SW_LEAD' \text{ and } SW_PCT < 9 \text{ and } PL_PCT <= 1$
0.5	white spruce reading without price	$C_{CODE} - C$ and $CROLE - SW_{LEAD}$ and $SW_{FCI} < 9$ and $FL_{FCI} < 1$
C4'	Pure pine	$C_CODE = 'C'$ and $PL_PCT >= 9$
'C5'	Pine leading with white spruce	$C_CODE = 'C'$ and $CRULE = 'PL$ LEAD' and $PL_PCT < 9$ and $SW_PCT > 1$ and
		$SW_ORD < FB_ORD$ and $SW_ORD < SB_ORD$
'C6'	Pine leading with black spruce	$C_CODE = 'C'$ and $CRULE = 'PL$ LEAD' and $PL_PCT < 9$ and $SB_PCT > 1$ and
		$SB_ORD < FB_ORD$ and $SB_ORD < SW_ORD$
C7'	Pine leading with fir	$C_CODE = 'C'$ and $CRULE = 'PL$ LEAD' and $PL_PCT < 9$ and $FB_PCT > 1$ and
	c	$FB_ORD < SB_ORD$ and $FB_ORD < SW_ORD$
'C8'	Pine leading without spruce and	$C_CODE = 'C'$ and $CRULE = 'PL$ LEAD' and $PL_PCT < 9$ and $FB_PCT <= 1$ and
	fir	$SB_PCT \ll 1$ and $SW_PCT \ll 1$
C9'	Pure black spruce	$C_{CODE} = C' \text{ and } SB_{PCT} >= 9$
C10'	Black spruce leading with pine	$C_{CODE} = 'C' \text{ and } SB_{LEAD}' \text{ and } SB_{PCT} < 9 \text{ and } PL_{PCT} > 1$
C11'		$C_{CODE} = C' \text{ and } CRULE = SB \text{ LEAD' and } SB_PCT <9 \text{ and } PL_PCT <= 1$
	prace reading without pine	
C12'	Larch leading	$C_CODE = 'C'$ and $CRULE = 'LT$ LEAD'
C13'	Pure Douglas-fir	$C_{CODE} = C' \text{ and } FD_{PCT} >= 9$
C14'	Douglas-fir leading	$C_{CODE} = C' \text{ and } CRULE = FD \text{ LEAD' and } FD_PCT < 9$
'C15'	Pure balsam fir	$C_{CODE} = C' \text{ and } FB_PCT >= 9$
C16'	Balsam fir leading with pine	$C_{CODE} = C'$ and $PL_{CT} = FB_{CT}$ and $FB_{CT} < 9$ and $PL_{PCT} > 1$
C17	Balsam fir leading without pine	$C_{CODE} = C'$ and $CRULE = 'FB_{LEAD}'$ and $FB_{PCT} < 9$ and $FL_{PCT} <= 1$
'XX0'	Non-forested	$C_{CODE} = C$ and $CROEE = TB_{EEAD}$ and $TB_{T}CT < 9$ and $TE_{T}CT < 1$

2.4.4 DFMP Yield Strata

Extended strata convert to species strata as shown in Table 2-8.

Table 2-8. Conversion of extended strata to species strata.

Broad Cover	Species		
Group	Stratum	Extended Stratum	Description
D	AW	D1, D2, D3, D4	Aspen or poplar leading deciduous stand
	BW	D5	Birch leading deciduous stand
DC	AP	DC2, DC10	Deciduous leading pine mixedwood
	AS	DC1, DC3, DC4, DC5, DC6, DC7, DC8, DC9, DC11, DC12	Deciduous leading spruce mixedwood ¹
CD	PA	CD4, CD5, CD6	Coniferous leading pine mixedwood
	SA	CD1, CD2, CD3, CD7, CD8, CD9, CD10, CD11, CD12	Coniferous leading spruce mixedwood
С	LT	C4, C5, C6, C7, C8	Larch leading conifer stand
	PL	C9, C10, C11	Black spruce leading conifer stand
	SB	C1, C2, C3, C13, C14, C15, C16, C17	Pine leading conifer stand
	SW	C12	White spruce leading conifer stand

¹ Includes a small area of poplar-leading pine mixedwood.

Species strata are the basis upon which DFMP yield strata are assigned. In FMU W13, species strata were converted directly to DFMP yield strata. In FMU W11, some species strata were grouped together to form DFMP yield strata while others were split based on crown closure class (Table 2-9).

Table 2-9. Conversion of species strata to DFMP yield strata.

	Broad	DFMP		Crown	
	Cover	Yield	Species	Closure	
FMU	Group	Stratum	Stratum	Class	Description
W11	D	AW_AB	AW	AB	Aspen or poplar leading deciduous stand, open crown closure
		AW_CD	AW	CD	Aspen or poplar leading deciduous stand, closed crown closure
		BW	BW	ABCD	Birch leading deciduous stand
	DC	APAS_ABCD	AP, AS	ABCD	Deciduous leading mixedwood stand
	CD	PASA_ABCD	PA, SA	ABCD	Coniferous leading mixedwood stand
	С	LT	LT	ABCD	Larch leading conifer stand
		PL_AB	PL	AB	Pine leading conifer stand, open crown closure
		PL_CD	PL	CD	Pine leading conifer stand, closed crown closure
		SB	SB	ABCD	Black spruce leading conifer stand
		SW_AB	SW	AB	White spruce leading conifer stand, open crown closure
		SW_CD	SW	CD	White spruce leading conifer stand, closed crown closure
W13	D	AW	AW	ABCD	Aspen or poplar leading deciduous stand
		BW	BW	ABCD	Birch leading deciduous stand
	DC	AP	AP	ABCD	Deciduous leading pine mixedwood
		AS	AS^1	ABCD	Deciduous leading spruce mixedwood
	CD	PA	PA	ABCD	Coniferous leading pine mixedwood
		SA	SA	ABCD	Coniferous leading spruce mixedwood
	С	LT	LT	ABCD	Larch leading conifer stand
		PL	PL	ABCD	Black spruce leading conifer stand
		SB	SB	ABCD	Pine leading conifer stand
		SW	SW	ABCD	White spruce leading conifer stand

3. Plot Attribute Assignment and Volume Compilation

3.1 Overview

This section describes how plot data were prepared for use in yield curve development. Data sources and the initial number of observations are described. The method of assigning landbase attributes to observations using spatial locations of plot data is then described, along with the methods of deleting observations from the dataset based on plot attributes. Finally, the methods for compiling gross merchantable stand volume (m^3 /ha) for each eligible observation are described.

3.2 Data Sources

Plot data were available from a variety of data sources (Table 3-1). Both permanent sample plot and temporary sample plot data were used. A summary of sampling programs is provided in Appendix III, Appendix IV and Appendix V.³

³ All data and data dictionaries are included with this submission in digital format.

Data	Data	Sampling		Location	Collection	Number	Number of
Set	Туре	Program	Ownership	FMU(s)	Year(s)	of Plots	Observations ¹
PSP/TSP	PSP	Existing W13 PSP	MWFP	W13	1996 to 2003	197	302
		New W11 PSP	MWFP	W11	2004	40	40
	TSP	Existing W13 TSP	MWFP	W13	1997, 1998	584	584
		Existing W11 TSP	ASRD	W11	2000	359	359
		New Volume Sampling TSP	MWFP	W11, W13	2004, 2005	562	562
		New Birch TSP	MWFP	W11, W13	2005	36	36
	Total					1,778	1,883
Athabasca	TSP	Athabasca Flats TSP	MWFP	W13	2004, 2005	57	57

Table 3-1.	Data sources	used in yield	curve development.

¹ Where PSP remeasurement data exist, each measurement is treated as an independant observation.

Data used in yield curve development were either from existing data sources, or were collected specifically to increase sample size for target yield strata. Existing growth and yield data (Existing W13 TSP, Existing W11 TSP, Existing W13 PSP) were catalogued in July 2004 (Millar Western 2004d). These data included existing PSP data from FMU W13, and existing TSP data from both FMUs.

Based on the existing number of plots, a sampling program was developed to increase sample sizes in target areas (New Volume Sampling TSP). In addition, a PSP program was initiated in FMU W11 in 2004, further increasing sample sizes (New W11 PSP). A birch sampling program was later added to increase the sample size in birch stands (New Birch TSP). Together, these data comprise the base dataset used for empirical yield curve development.

The Athabasca Flats selective logging area was treated as a separate entity and sampled under its own program in 2004 and 2005 (Millar Western 2004a). These data were specifically collected to develop yield curves for the Athabasca Flats selective logging area, and are discussed later in this document (Section 7.4: Athabasca Flats Selective Logging Yield Curves).

3.3 Plot Attribute Assignment

Spatial locations of all sample plots were available. Spatial plot locations were compiled into two shapefiles: one for permanent sample plots (*all_psps.shp*) and one for temporary sample plots (*all_tsp_to_2005.shp*). Attribute tables for shapefiles were standardized to contain polygon number, *cutblock* number, plot number, establishment year (year of first measurement for PSPs and sample year for TSPs), original spatial data source, and sampling program name. A unique ID was assigned to each plot using a combination of polygon, cutblock, plot and establishment year. These two shapefiles were merged together to create *plot_attributes20060221.shp*.

Attributes were assigned to each plot by intersecting *plot_attributes20060221.shp* with the Millar Western spatial landbase, version 9 (*mwfp_lb9a_model2.shp*). This version of the landbase did not include spatial locations of seismic lines; rather, individual polygon areas were reduced to account for losses due to seismic exploration. Plot deletions to account for seismic disturbance are described in Section 3.4.

Where there was more than one observation per plot, plot attributes were attached to each observation.

3.4 Deletions

To be eligible for empirical yield curve development, observations had to be from plots:

- 1. Within the managed landbase⁴; and
- 2. In natural (non-regenerating, non-thinned) stands that had not been burned since sampling, and had not been harvested either before or after sampling.

The following deletions were applied to the base TSP/PSP dataset⁵.

Fire Disturbance

Two major fires occurred in the FMA area between the time when the last AVI inventory was obtained (1994) and the effective date of the classified landbase (2004). These occurred in the Virginia Hills and Roche Lake areas in 1998. TSP data were collected in 1997/1998 in these areas, and it was assumed that these stands were burned during the fire. Any observations from plots classified as within the Virginia Hills or Roche Lake burn areas were removed from the sample.

Two small fires also occurred since the last inventory was obtained. No plots were sampled within these areas.

Harvesting or Thinning

Observations from stands harvested or thinned after sampling no longer represent standing timber in natural stands on the managed landbase. These observations were removed from the dataset. Some of these plots had also been sampled in regenerating cutblocks for use in an unrelated modelling endeavour; these observations were also removed from the base dataset for yield curve development.

Landbase Deletions

To ensure consistency with the landbase classification, plot locations were spatially intersected with the classified landbase. This allowed the removal of plots falling within the unmanaged landbase (*e.g.*, unproductive TPR, W11 black spruce stands, larch stands, buffers, roads, *etc.*).

⁴ The managed landbase excludes all deletion areas (parks, roads, buffers, unproductive TPR, larch stands, W11 black spruce stands, *etc.* See Millar Western 2007 for full details). As such, plots in the managed landbase had already been screened for these attributes.

⁵ Excluding Athabasca Flats selective logging plots.

All observations from the unmanaged landbase, excluding seismic disturbance, were removed from the sample.

Seismic Disturbance

All 2004/2005 TSPs were offset from seismic disturbance and all PSPs are protected from seismic disturbance. No observations were deleted from these datasets.

The 1997/1998 TSPs were not offset from seismic disturbance, however, plot data contained an annotation indicating whether the sampled plot contained seismic disturbance. Observations from plots containing seismic disturbance were removed from the 1997/1998 TSP dataset.

The 2000 SRD TSPs were not protected from seismic disturbance, nor was there plot annotation indicating whether seismic disturbance was present within the plot. No plots were deleted, but there is an inherent assumption that *plot volumes* may be underestimated due to an unknown quantity of seismic disturbance within plots.

Additional Deletions: PSPs

Millar Western has established PSPs in managed stands. These may be Plantation PSPs (PPSPs), established in *clearcuts*, or Enhanced Forest Management PSPs (EFMPSPs), established in thinned stands (Millar Western 2006b). Observations from these plots were generally removed using landbase attribute information, which indicated that they were in managed stands.

A few EFMPSPs were not excluded using landbase attribute information, but should have been removed from the dataset⁶. These plots were subjectively removed. A few Plantation PSPs (PPSPs) were classified as natural stands based on landbase information, generally with an AVI modifier set to 'CC'. These plots were also removed from the dataset.

Additional Deletions: Influential Points

During the fitting of empirical yield curves, ten *influential points* were identified and were entirely removed from the dataset. An additional 3 influential points were also identified for deciduous volumes and removed from the deciduous dataset.

These were points that were outliers, exhibited strongly atypical volumes for their site type (fair, medium or good), and/or inordinately affected model performance. A list of influential points by FMU, plot volumes and ages, dataset deleted from and reason for deletion are provided in Table 3-2.

⁶ Control EFM PSPs were retained, since they were established in unthinned portions of EFM stands.

	Unique	DFMP Yield		Volu	me (m³/ha)		_		
FMU	Plot Identifier	Stratum	Age	Coniferous	Deciduous	Total	TPR	Deletion	Reason for Deletion
W11	366331-0-1-2004	AW_AB	134	62.1	81.8	143.9	n/a	Both	The regression couldn't converge
	366331-0-2-2004	AW_AB	134	97.4	6.5	103.9	n/a	Both	The regression couldn't converge
	366331-0-3-2004	AW_AB	134	63.7	236.3	300.0	n/a	Both	The regression couldn't converge
	374355-0-2-2004	PASA_ABCD	134	124.1	520.0	644.1	n/a	Decid.	Outlier
	406637-0-2-2004	PASA_ABCD	64	0.0	579.4	579.4	n/a	Decid.	Outlier
	367044-0-2-2000	PASA_ABCD	100	96.5	796.1	892.6	n/a	Decid.	Outlier
W13	591650276-0-2-2004	AP	104	344.4	234.6	579.0	F	Both	Resulted in inappropriate model form using site
	621450328-0-2-2004	AP	124	344.0	0.0	344.0	М	Both	Resulted in inappropriate model form using site
	581550449-0-3-2004	PA	104	0.0	690.7	690.7	М	Both	Outlier
	581350372-0-1-2004	SA	124	209.6	0.0	209.6	G	Both	Resulted in inappropriate model form using site
	581350372-0-3-2004	SA	124	117.7	0.0	117.7	G	Both	Resulted in inappropriate model form using site
	591550612-0-1-2004	SA	104	399.1	0.0	399.1	М	Both	Resulted in inappropriate model form using site
	601550004-0-593-1997	SA	77	278.9	0.0	278.9	G	Both	Resulted in inappropriate model form using site

Table 3-2. Influential points by FMU, deletion type and reason for deletion.

Final Number of Observations

The original number of available TSP/PSP observations from Table 3-1 is broken down by FMU in Table 3-3. Deletions based on landbase information are also classified by FMU, as are additional PSP and influential plot deletions. The final number of observations used in yield curve development was 582 and 769 for FMUs W11 and W13, respectively.

Table 3-3. Reconciliation of the initial number of observations, number of deleted observations and final number of observations used in empirical yield curve development.

			Number of Observations			
Description	Reason for Deletion	FMU W11	FMU W13	Total		
Original Number of Observations ¹		726	1,157	1,883		
Initial Deletions: Landbase	Burned or harvested	22	160	182		
	Seismic disturbance within plot	-	59	59		
	Unmanaged landbase	119	152	271		
Additional Deletions: PSPs	EFM (thinned) plots	-	3	3		
	Plantation plots	-	7	7		
Additional Deletions: Influential Points ²		3	7	10		
Total Observations for Yield Curve Develo	opment	582	769	1,351		
	1			<i>)</i>		

¹ Athabasca Flats selective logging plots are treated separately and are not included in this discussion.

² Does not include three influential points in FMU W11 which were deleted from the deciduous dataset but not from the coniferous dataset.

3.5 DFMP Yield Stratum and Age Assignment

Chapter 2 described the methods for assigning DFMP yield strata and other landbase attributes to landbase polygons. Section 3.3 described how landbase attributes were assigned to plots using a spatial intersection of plot locations with the Millar Western landbase, version 9. As a result of these two processes, each observation was provided with a species stratum assignment (F_YC) and a crown closure class assignment (F_DEN) consistent with the landbase assignment process. These two variables were combined using the rules in Table 3-4 to assign DMFP yield strata.

Table 3-4. Rules for assigning DFMP yield strata to plots based on FMU, species stratum and density.

	Broad	DFMP	Species	
	Cover	Yield	Stratum	Crown Closure
FMU	Group	Stratum	(F_YC)	Class (F_DEN)
W11	D	AW_AB	AW	A, B
		AW_CD	AW	C, D
		BW	BW	Any
	DC	APAS_ABCD	AP, AS	Any
	CD	PASA_ABCD	PA, SA	Any
	С	LT	LT	Any
		PL_AB	PL	A, B
		PL_CD	PL	C, D
		SB	SB	Any
		SW_AB	SW	A, B
		SW_CD	SW	C, D
W13	D	AW	AW	Any
		BW	BW	Any
	DC	AP	AP	Any
		AS	AS^1	Any
	CD	PA	PA	Any
		SA	SA	Any
	С	LT	LT	Any
		PL	PL	Any
		SB	SB	Any
		SW	SW	Any

The number of eligible observations by DFMP yield stratum assignment is presented in Table 3-5.

Table 3-5. Number of eligible observations for empirical yield curve development by FMU and DFMP yield stratum.

	DFMP Yield	Number of
FMU	Stratum	Observations
W11	AW_AB	60
	AW_CD	105
	BW	6
	APAS_ABCD	72
	PASA_ABCD	80
	PL_AB	71
	PL_CD	66
	SW_AB	59
	SW_CD	63
	Total	582
W13	AW	138
	BW	36
	AP	56
	AS	96
	PA	63
	SA	60
	PL	183
	SB	61
	SW	76
	Total	769
Grand Total		1,351

Stand age for the defining layer at the reference year (2004) was also already appended to plot data from intersecting plot locations with landbase attributes (F_AGE).

Stand age for each observation at the year of measurement was calculated as stand age in 2004 (the reference year) minus the number of years between 2004 and the measurement year:

 $Age_{Obs} = Age_{2004} - (2004 - MmtYear)$

Where :

 Age_{2004} = stand age in 2004 (F AGE)

 Age_{Obs} = stand age at year of measurement

MmtYear = measurement year (establishment year for TSPs, varies for PSPs)

Other landbase attributes were also retained for use in empirical yield curve development. These included density, height, and TPR.

3.6 Volume Compilation

Each eligible observation from the combined TSP/PSP dataset was used to compile gross merchantable stand volume estimates. Use of the term *gross* indicates that there has been no deduction for *cull*. Each PSP plot measurement was considered an independent observation for the purposes of yield curve development.

For each sample plot, the merchantable length of each live tree with a minimum stump diameter of 15.0 cm was calculated. Both birch and larch were considered merchantable species⁷. This calculation was based on the measured height of the tree, a 10.0 cm minimum top diameter and minimum stump height as defined in Table 3-6.

Utilization Characteristic	FMU W11	FMU W13
Minimum top diameter inside bark	10 cm	10 cm
Minimum stump diameter outside bark	15 cm	15 cm
Stump height	30 cm	30 cm - SW
		20 cm - all other spp.
Minimum log length	4.88 m	4.88 m
Species	all	all

Calculations involved the iterative process presented in 'Ecologically Based Individual Tree Volume Estimation For Major Alberta Tree Species' (Huang 1994b). Trees not meeting utilization limits were deleted from the dataset.

⁷ The BW DFMP yield stratum is part of the managed landbase, and birch is also considered an acceptable component of stands in other DFMP yield strata. The LT DFMP yield stratum is not considered part of the managed landbase; however, larch trees within stands are considered eligible for harvest, and as such are included in volume compilations.

The merchantable length of each tree was divided into 30 sections of equal length. Diameters were determined for the top, middle and bottom of each section using Kozak's variable exponent taper equation (Kozak 1988) and ecoregion/tree species-specific coefficients for the province of Alberta (Huang 1994a). The equation was:

$$dib = a_0 DBH^{a_1} * a_2^{DBH} * X^{b_1 Z^2 + b_2 \ln(Z + 0.001) + b_3 \sqrt{Z} + b_4 e^Z + b_5 \left(\frac{DBH}{H}\right)}$$

Where:

dib = stem diameter inside bark (cm) at height h (m)

DBH = diameter at breast height outside bark (cm)

 $H = \text{total tree height}^8 (m)$

$$X = \frac{1 - \sqrt{h/H}}{1 - \sqrt{p}}$$

Z = h/H

h = stem height (m)

p = relative height of inflection point from the ground

 $a_0, a_1, a_2, b_1, b_2, b_3, b_4, b_5 = coefficients$

For each tree, volumes for each section were calculated using Newton's equation (Husch *et al.* 1982):

$$MV = \frac{ML/10}{6} * (0.00007854) * (d_0^2 + 4d_1^2 + d_2^2)$$

Where:

MV = merchantable volume (m³)

ML = merchantable length (m)

 d_0 = diameter at bottom of section (cm)

 d_1 = diameter at middle of section (cm)

 d_2 = diameter at top of section (cm)

⁸ Recorded total height was used for volume calculations. Where heights were missing, equations from Huang (1994a) were used to estimate total height.

Gross *merchantable tree volumes* were then determined by summing individual section volumes for each tree. Tree volumes were converted to gross merchantable stand volume (volume per hectare) using the appropriate plot size expansion factor. Observations with no merchantable trees were assigned zero gross merchantable volume ($0 \text{ m}^3/\text{ha}$) and retained within the dataset.

For each observation, the total coniferous gross merchantable stand volume was calculated by summing the m^3 /ha estimates for each live coniferous tree within the plot. The total deciduous gross merchantable stand volume was calculated by summing the m^3 /ha estimates for each live deciduous tree within the plot.

4. Landbase Summaries and Reconciliation

4.1 Overview

This section provides summaries of landbase areas based on the final landbase prepared for Millar Western, which is landbase version 12. The landbase is described in the document "Landbase Classification: 2007-2016 Detailed Forest Management Plan." (Millar Western 2007).

Only the managed landbase is summarized here, since this is the only portion relevant to yield curve development. For summaries of the unmanaged landbase, see Millar Western (2007).

4.2 Landbase Summaries

The file *lb12_tsa_attr.shp* (landbase version 12) was used to obtain managed landbase areas. Landbase areas by DFMP yield stratum and stand type are presented in Table 4-1 and Table 4-2 for FMUs W11 and W13, respectively.

Table 4-1. Total managed landbase area (ha) by DFMP yield stratum and stand type, FMUW11.

DFMP Yield	Stand	Туре	
Stratum	Natural	Managed	Total
AW_AB	8,140	-	8,140
AW_CD	41,554	3,492	45,046
BW	130	-	130
APAS_ABCD	4,488	1,892	6,380
PASA_ABCD	5,027	1,594	6,621
PL_AB	3,582	-	3,582
PL_CD	6,844	1,162	8,006
SB	-	-	-
SW_AB	2,863	-	2,863
SW_CD	5,116	1,484	6,600
Total	77,744	9,625	87,369

Table 4-2. Total managed landbase area (ha) by DFMP yield stratum and stand type, FMUW13.

DFMP Yield		Stand Type							
Stratum	Natural	Managed	Thinning ¹	Selective Logging ^{2,3,4}	Total				
AW	52,397	5,447	2	-	57,846				
BW	1,024	80	1	-	1,105				
AP	5,498	527	17	-	6,042				
AS	13,549	5,562	4	-	19,115				
PA	7,602	2,647	45	61	10,354				
SA	10,207	6,774	8	711	17,700				
PL	44,707	20,802	1,132	-	66,641				
SB	16,558	179	69	-	16,806				
SW	11,929	4,876	3	-	16,808				
Total	163,471	46,892	1,280	772	212,416				

¹ Salvage and commercial thinning in natural stands; excludes selective logging.

² Selective logging took place in the Athabasca Flats vicinity of the Athabasca river using horse logging methods.

³ Includes blocks classified as planned in 2004 but that have subsequently been harvested.

⁴ DFMP yield strata are based on post-harvest assignment.

4.3 Distribution of Data

This section summarizes the number of plots used in yield curve development relative to the managed landbase areas that these curves represent. The number of plots is summarized by DFMP yield stratum and various attributes of interest (height class, age class, TPR class (in the case of FMU W13) and defining layer. Note that all landbase summaries were generated using landbase 12 attributes.

The number and percent of observations by DFMP yield stratum and height class for FMU W11 is shown in Table 4-3. The table also presents the landbase area and percent area by DFMP yield stratum, stand type and height class. Observations are generally in proportion to the distribution of natural stands, with the exception of the SW_AB DFMP yield stratum, where taller height classes are underrepresented.

DFMP Yield	Height	Observ	ations	Land	base Area (l	ha)	Percen	t Landbase A	rea
Stratum	Class (m)	Total	%	Natural	Managed	Total	Natural	Managed	Total
AW_AB	0-10	19	32%	3,160	-	3,160	39%	n/a	39%
	11-20	6	10%	1,084	-	1,084	13%	n/a	13%
	21+	35	58%	3,895	-	3,895	48%	n/a	48%
	Total	60	100%	8,140	-	8,140	100%	n/a	100%
AW_CD	0-10	31	30%	12,563	3,420	15,983	30%	98%	35%
	11-20	22	21%	9,447	0	9,447	23%	0%	21%
	21+	52	50%	19,543	72	19,615	47%	2%	44%
	Total	105	100%	41,554	3,492	45,046	100%	100%	100%
BW	0-10	-	0%	76	-	76	59%	0%	59%
	11-20	-	0%	54	-	54	41%	0%	41%
	21+	-	0%	-	-	-	0%	0%	0%
	Total	-	0%	130	-	130	100%	0%	100%
APAS_ABCD	0-10	13	18%	512	1,806	2,318	11%	95%	36%
	11-20	23	32%	1,070	0	1,070	24%	0%	17%
	21+	36	50%	2,907	85	2,992	65%	5%	47%
	Total	72	100%	4,488	1,892	6,380	100%	100%	100%
PASA_ABCD	0-10	7	9%	459	1,408	1,867	9%	88%	28%
	11-20	29	36%	1,391	1	1,392	28%	0%	21%
	21+	44	55%	3,178	185	3,363	63%	12%	51%
	Total	80	100%	5,027	1,594	6,621	100%	100%	100%
PL_AB	0-10	17	24%	1,119	-	1,119	31%	n/a	31%
	11-20	48	68%	2,280	-	2,280	64%	n/a	64%
	21+	6	8%	183	-	183	5%	n/a	5%
	Total	71	100%	3,582	-	3,582	100%	n/a	100%
PL_CD	0-10	11	17%	1,858	1,162	3,020	27%	100%	38%
	11-20	38	58%	3,637	-	3,637	53%	0%	45%
	21+	17	26%	1,349	-	1,349	20%	0%	17%
	Total	66	100%	6,844	1,162	8,006	100%	100%	100%
SW_AB	0-10	15	25%	246	-	246	9%	n/a	9%
	11-20	27	<mark>46%</mark>	967	-	967	34%	n/a	34%
	21+	17	29%	1,649	-	1,649	58%	n/a	58%
	Total	59	100%	2,863	-	2,863	100%	n/a	100%
SW_CD	0-10	9	14%	227	1,432	1,659	4%	96%	25%
	11-20	16	25%	1,511	1	1,511	30%	0%	23%
	21+	38	60%	3,379	52	3,430	66%	3%	52%
	Total	63	100%	5,116	1,484	6,600	100%	100%	100%
Grand Total		576		77,744	9,625	87,369			

Table 4-3. Number and percent of observations by height class relative to the amount (area in ha) and percent landbase, FMU W11.

DELO MALL

The number and percent of observations by DFMP yield stratum and age class for FMU W11 is shown in Table 4-4. The table also presents the landbase area and percent area by DFMP yield stratum, stand type and age class. Note that the goal of the 2004 volume sampling program was to obtain a relatively even spread of observations across merchantable age classes to anchor yield curves, rather than to obtain proportional representation relative to landbase areas.

DFMP Yield	Age	Observ	ations	Land	lbase Area (l	ha)	Percent Landbase Area			
Stratum	Class (y)	Total	%	Natural	Managed	Total	Natural	Managed	Total	
AW_AB	0-39	9	15%	2,959	-	2,959	36%	n/a	36%	
	40-79	16	27%	972	-	972	12%	n/a	12%	
	80-119	25	42%	3,799	-	3,799	47%	n/a	47%	
	120+	10	17%	410	-	410	5%	n/a	5%	
	Total	60	100%	8,140	-	8,140	100%	n/a	100%	
AW_CD	0-39	32	30%	14,354	3,492	17,846	35%	100%	40%	
	40-79	8	8%	4,482	-	4,482	11%	0%	10%	
	80-119	49	47%	21,550	-	21,550	52%	0%	48%	
	120+	16	15%	1,168	-	1,168	3%	0%	3%	
	Total	105	100%	41,554	3,492	45,046	100%	100%	100%	
BW	0-39	-	0%	7	-	7	5%	0%	5%	
	40-79	-	0%	110	-	110	85%	0%	85%	
	80-119	-	0%	14	-	14	10%	0%	10%	
	120+	-	0%	-	-	-	0%	0%	0%	
	Total	-	0%	130	-	130	100%	0%	100%	
APAS_ABCD	0-39	4	6%	359	1,892	2,251	8%	100%	35%	
	40-79	18	25%	500	-	500	11%	0%	8%	
	80-119	24	33%	3,091	-	3,091	69%	0%	48%	
	120+	26	36%	538	-	538	12%	0%	8%	
	Total	72	100%	4,488	1,892	6,380	100%	100%	100%	
PASA_ABCD	0-39	4	5%	166	1,594	1,760	3%	100%	27%	
	40-79	21	26%	495	-	495	10%	0%	7%	
	80-119	34	43%	3,132	-	3,132	62%	0%	47%	
	120+	21	26%	1,234	-	1,234	25%	0%	19%	
	Total	80	100%	5,027	1,594	6,621	100%	100%	100%	
PL_AB	0-39	7	10%	765	-	765	21%	n/a	21%	
	40-79	24	34%	1,054	-	1,054	29%	n/a	29%	
	80-119	25	35%	1,618	-	1,618	45%	n/a	45%	
	120+	15	21%	144	-	144	4%	n/a	4%	
	Total	71	100%	3,582	-	3,582	100%	n/a	100%	
PL_CD	0-39	5	8%	1,145	1,162	2,307	17%	100%	29%	
	40-79	20	30%	1,570	-	1,570	23%	0%	20%	
	80-119	20	30%	3,892	-	3,892	<u>57%</u> 3%	0%	49%	
	120+	21	32%	237	-	237		0%	3%	
CIVI AD	Total	66	100%	6,844	1,162	8,006	100%	100%	100%	
SW_AB	0-39	0	0%	151	-	151	5%	n/a	5%	
	40-79	19	32%	121	-	121	4%	n/a	4%	
	80-119 120+	<u>19</u> 21	32%	1,842 749	-	1,842 749	64%	n/a	64%	
			36%				26%	n/a	26%	
SWL CD	Total	59	100%	2,863	-	2,863	100%	n/a	100%	
SW_CD	0-39	0	0%	87	1,484	1,572	2%	100%	24%	
	40-79	17	27%	416	-	416	8%	0%	6%	
	80-119	25	40%	3,082	-	3,082	60%	0%	47%	
	120+ Tatal	21	33%	1,531		1,531	30%	0%	23%	
Case J T : ()	Total	63	100%	5,116	1,484	6,600	100%	100%	100%	
Grand Total		576		77,744	9,625	87,369				

Table 4-4. Number and percent of observations by age class relative to the amount (area in ha) and percent landbase, FMU W11.

The number and percent of observations by DFMP yield stratum and defining layer for FMU W11 is shown in Table 4-5. Note that for managed stands, AVI information is not necessarily the source of the DFMP yield stratum assignment, therefore those areas are not included here. Generally all strata were sampled in proportion to the area of composite stands; the exception is stratum SW_AB, which has slightly higher representation of plots with understory assignment relative to total landbase area.

DFMP Yield	Defining	Observ	ations	Land	base
Stratum	Layer	Total	%	Area (ha)	% Area
AW_AB	Overstory	53	88%	7,649	94%
	Understory	4	7%	311	4%
	Composite	3	5%	180	2%
	Total	60	100%	8,140	100%
AW_CD	Overstory	102	97%	38,934	94%
	Understory	1	1%	852	2%
	Composite	2	2%	1,767	4%
	Total	105	100%	41,554	100%
BW	Overstory	-	0%	40	30%
	Understory	-	0%	87	67%
	Composite	-	0%	4	3%
	Total	-	0%	130	100%
APAS ABCD	Overstory	62	86%	3,655	81%
—	Understory	9	13%	215	5%
	Composite	1	1%	617	14%
	Total	72	100%	4,488	100%
PASA_ABCD	Overstory	63	79%	3,556	71%
	Understory	6	8%	202	4%
	Composite	11	14%	1,270	25%
	Total	80	100%	5,027	100%
PL_AB	Overstory	68	96%	3,512	98%
	Understory	3	4%	62	2%
	Composite	-	0%	8	0%
	Total	71	100%	3,582	100%
PL_CD	Overstory	66	100%	6,703	98%
	Understory	-	0%	13	0%
	Composite	-	0%	128	2%
	Total	66	100%	6,844	100%
SW_AB	Overstory	40	<mark>68%</mark>	2,547	89%
	Understory	16	27%	124	4%
	Composite	3	5%	191	7%
	Total	59	100%	2,863	100%
SW_CD	Overstory	51	81%	4,012	78%
—	Understory	8	13%	207	4%
	Composite	4	6%	896	18%
	Total	63	100%	5,116	100%
Grand Total		576		77,744	

Table 4-5. Number and percent of observations by defining layer class relative to the amount (area in ha) and percent natural stand landbase area, FMU W11.

The number and percent of observations by DFMP yield stratum and site type for FMU W13 is shown in Table 4-6. The table also presents the landbase area and percent area by DFMP yield stratum, stand type and site type. The number of observations is generally in proportion with natural stands, with the exception of the SB DFMP yield stratum. The cause of this misalignment is uncertain, however, the method for development of yield curves in FMU W13 incorporates site into the yield function, and therefore the proportion of observations by site will not have an impact in overall model performance.

DFMP Yield	d TPR	Observ	ations	Lan	dbase Area ((ha)	Percen	t Landbase A	rea
Stratum	Class	Total	%	Natural	Managed ¹	Total	Natural	Managed	Total
AW	F	17	12%	9,079	1,384	10,463	17%	25%	18%
	М	109	79%	37,394	3,879	41,273	71%	71%	71%
	G	12	9%	5,925	186	6,110	11%	3%	11%
	Total	138	100%	52,397	5,449	57,846	100%	100%	100%
BW	Total	42	n/a	1,024	81	1,105	100%	100%	100%
AP	F	8	16%	873	48	922	16%	9%	15%
	М	44	78%	3,598	472	4,069	65%	87%	67%
	G	4	7%	1,028	24	1,051	19%	4%	17%
	Total	56	100%	5,498	544	6,042	100%	100%	100%
AS	F	22	23%	2,486	1,336	3,821	18%	24%	20%
	М	68	71%	9,369	3,802	13,171	69%	68%	69%
	G	6	6%	1,694	428	2,122	13%	8%	11%
	Total	96	100%	13,549	5,566	19,115	100%	100%	100%
PA	F	1	2%	457	549	1,006	6%	20%	10%
	М	33	53%	4,009	1,552	5,560	53%	56%	54%
	G	29	45%	3,136	652	3,788	41%	24%	37%
	Total	63	100%	7,602	2,753	10,354	100%	100%	100%
SA	F	6	9%	268	1,169	1,437	3%	16%	8%
	М	39	63%	6,872	5,583	12,455	67%	75%	70%
	G	15	28%	3,067	741	3,808	30%	10%	22%
	Total	60	100%	10,207	7,492	17,700	100%	100%	100%
PL	F	18	10%	4,687	2,075	6,762	10%	9%	10%
	М	99	54%	28,029	13,138	41,167	63%	60%	62%
	G	66	36%	11,991	6,720	18,711	27%	31%	28%
	Total	183	100%	44,707	21,934	66,641	100%	100%	100%
SB	F	19	31%	1,155	-	1,155	7%	0%	7%
	М	24	<mark>39%</mark>	11,580	205	11,785	70%	83%	70%
	G	18	<u>30%</u>	3,822	43	3,865	23%	17%	23%
	Total	61	100%	16,558	248	16,806	100%	100%	100%
SW	F	7	9%	541	1,159	1,700	5%	24%	10%
	М	47	62%	8,434	3,369	11,802	71%	69%	70%
	G	22	29%	2,954	351	3,305	25%	7%	20%
	Total	76	100%	11,929	4,879	16,808	100%	100%	100%
Grand Total		775		163,471	48,945	212,416			

Table 4-6. Number and percent of observations by TPR class relative to the amount (area
in ha) and percent landbase, FMU W13.

¹ Thinning and selective logging were included with Managed Stand areas in order to simplify this table.

The number and percent of observations by DFMP yield stratum and height class for FMU W13 is shown in Table 4-7. The table also presents the landbase area and percent area by DFMP yield stratum, stand type and height class. Observations are generally in proportion to the distribution of natural stands, with the exception of the AP, PA and PL yield strata. This may be partly an artefact of the 1997/1998 TSP sampling program, where relatively equal numbers of stands were sampled within each of three height classes. Underrepresentation of plots at lower height classes may be related to the fact that either minimum height criteria and/or minimum age criteria have been applied to TSP sampling programs. Incorporation of site index into modelling may help mitigate issues with height class representation (site is related to age and height).

DFMP Yield	Height	Observ	ations	Lan	dbase Area (ha)	Percen	t Landbase A	rea
Stratum	Class (m)	Total	%	Natural	Managed ¹	Total	Natural	Managed	Total
AW	0-10	22	16%	3,879	5,025	8,904	7%	92%	15%
	11-20	79	57%	29,079	336	29,415	55%	6%	51%
	21+	37	27%	19,440	88	19,527	37%	2%	34%
	Total	138	100%	52,397	5,449	57,846	100%	100%	100%
BW	0-10	12	29%	527	-	527	51%	0%	48%
	11-20	30	71%	497	81	578	49%	100%	52%
	21+	0	0%	-	-	-	0%	0%	0%
	Total	42	100%	1,024	81	1,105	100%	100%	100%
AP	0-10	3	5%	1,344	466	1,810	24%	86%	30%
	11-20	21	38%	2,531	11	2,542	46%	2%	42%
	21+	32	<mark>57%</mark>	1,624	66	1,690	30%	12%	28%
	Total	56	100%	5,498	544	6,042	100%	100%	100%
AS	0-10	11	11%	1,136	5,086	6,222	8%	91%	33%
	11-20	32	33%	4,803	94	4,897	35%	2%	26%
	21+	53	55%	7,611	385	7,996	56%	7%	42%
	Total	96	100%	13,549	5,566	19,115	100%	100%	100%
PA	0-10	10	16%	2,769	1,861	4,630	36%	68%	45%
	11-20	14	22%	2,597	252	2,849	34%	9%	28%
	21+	39	62%	2,236	640	2,876	29%	23%	28%
	Total	63	100%	7,602	2,753	10,354	100%	100%	100%
SA	0-10	9	15%	842	2,501	3,343	8%	33%	19%
	11-20	13	22%	3,020	795	3,814	30%	11%	22%
	21+	38	63%	6,346	4,196	10,542	62%	56%	60%
	Total	60	100%	10,207	7,492	17,700	100%	100%	100%
PL	0-10	44	24%	19,091	19,216	38,306	43%	88%	57%
	11-20	85	46%	19,036	1,511	20,547	43%	7%	31%
	21+	54	30%	6,580	1,207	7,787	15%	6%	12%
	Total	183	100%	44,707	21,934	66,641	100%	100%	100%
SB	0-10	28	46%	7,052	132	7,184	43%	53%	43%
	11-20	33	54%	9,396	87	9,484	57%	35%	56%
	21+	0	0%	109	28	137	1%	11%	1%
	Total	61	100%	16,558	248	16,806	100%	100%	100%
SW	0-10	15	20%	1,731	3,264	4,995	15%	67%	30%
	11-20	21	28%	3,401	486	3,887	29%	10%	23%
	21+	40	53%	6,797	1,128	7,926	57%	23%	47%
	Total	76	100%	11,929	4,879	16,808	100%	100%	100%
Grand Total		775		163,471	48,945	212,416			

Table 4-7. Number and percent of observations by height class relative to the amount (area in ha) and percent landbase, FMU W13.

¹ Thinning and selective logging were included with Managed Stand areas in order to simplify this table.

The number and percent of observations by DFMP yield stratum and age class for FMU W13 is shown in Table 4-8. The table also presents the landbase area and percent area by DFMP yield stratum, stand type and age class. Note that the goal of the 2004 volume sampling program was to obtain a relatively even spread of observations across merchantable age classes to anchor yield curves, rather than to obtain proportional representation relative to landbase areas.

Table 4-8. Number and percent of observations by age class relative to the amount (area in ha) and percent landbase, FMU W13.

DFMP Yield	Age	Observ	ations	Lan	dbase Area (l	ha)	Percen	Percent Landbase Area				
Stratum	Class (y)	Total	%	Natural	Managed ¹	Total	Natural	Managed	Total			
AW	0-39	3	2%	2,225	5,447	7,671	4%	100%	13%			
	40-79	86	62%	24,463	1	24,464	47%	0%	42%			
	80-119	43	31%	22,052	1	22,054	42%	0%	38%			
	120+	6	4%	3,657	-	3,657	7%	0%	6%			
	Total	138	100%	52,397	5,449	57,846	100%	100%	100%			
BW	0-39	0	0%	124	80	204	12%	99%	18%			
	40-79	36	86%	881	1	882	86%	1%	80%			
	80-119	6	14%	20	-	20	2%	0%	2%			
	120+	0	0%	-	-	-	0%	0%	0%			
	Total	42	100%	1,024	81	1,105	100%	100%	100%			
AP	0-39	0	0%	856	516	1,372	16%	95%	23%			
	40-79	24	43%	2,861	3	2,865	52%	1%	47%			
	80-119	15	27%	1,529	24	1,553	28%	4%	26%			
	120+	17	30%	252	-	252	5%	0%	4%			
	Total	56	100%	5,498	544	6,042	100%	100%	100%			
AS	0-39	0	0%	182	5,562	5,744	1%	100%	30%			
	40-79	34	35%	3,838	0	3,838	28%	0%	20%			
	80-119	40	42%	6,313	3	6,316	47%	0%	33%			
	120+	22	23%	3,217	-	3,217	24%	0%	17%			
	Total	96	100%	13,549	5,566	19,115	100%	100%	100%			
PA	0-39	0	0%	1,953	2,634	4,587	26%	96%	44%			
	40-79	22	35%	2,936	16	2,952	39%	1%	29%			
	80-119	14	22%	1,571	96	1,667	21%	3%	16%			
	120+	27	43%	1,141	7	1,149	15%	0%	11%			
	Total	63	100%	7,602	2,753	10,354	100%	100%	100%			
SA	0-39	0	0%	135	6,774	6,909	1%	90%	39%			
	40-79	11	18%	1,846	53	1,900	18%	1%	11%			
	80-119	21	35%	3,309	399	3,708	32%	5%	21%			
	120+	28	47%	4,917	266	5,183	48%	4%	29%			
	Total	60	100%	10,207	7,492	17,700	100%	100%	100%			
PL	0-39	3	2%	6,047	20,743	26,791	14%	95%	40%			
	40-79	117	64%	27,899	526	28,425	62%	2%	43%			
	80-119	30	16%	6,609	646	7,255	15%	3%	11%			
	120+	33	18%	4,152	19	4,170	9%	0%	6%			
	Total	183	100%	44,707	21,934	66,641	100%	100%	100%			
SB	0-39	0	0%	436	179	615	3%	72%	4%			
	40-79	28	46%	6,430	0	6,430	39%	0%	38%			
	80-119	8	13%	2,853	68	2,921	17%	28%	17%			
	120+	25	41%	6,839	0	6,839	41%	0%	41%			
	Total	61	100%	16,558	248	16,806	100%	100%	100%			
SW	0-39	0	0%	77	4,767	4,843	1%	98%	29%			
	40-79	23	30%	2,678	0	2,678	22%	0%	16%			
	80-119	19	25%	3,357	112	3,469	28%	2%	21%			
	120+	34	45%	5,817	-	5,817	49%	0%	35%			
	Total	76	100%	11,929	4,879	16,808	100%	100%	100%			
Grand Total		775		163,471	48,945	212,416						

¹ Thinning and selective logging were included with Managed Stand areas in order to simplify this table.

The number and percent of observations by DFMP yield stratum and defining layer for FMU W13 is shown in Table 4-9. Note that for managed stands, AVI information is not necessarily the source of the DFMP yield stratum assignment, therefore those areas are not included here. Generally all strata were sampled in proportion to the area of composite stands; the exceptions are the BW and SB strata.

Table 4-9. Number and percent of observations by defining layer class relative to the amount (area in ha) and percent natural stand landbase area, FMU W13.

DFMP Yield	Defining	Observ	ations	Land	base
Stratum	Layer	Total	%	Area (ha)	% Area
AW	Overstory	105	76%	39,898	76%
	Understory	17	12%	3,448	7%
	Composite	16	12%	9,051	17%
	Total	138	100%	52,397	100%
BW	Overstory	18	<mark>43%</mark>	764	75%
	Understory	12	<mark>29%</mark>	202	20%
	Composite	12	<mark>29%</mark>	58	6%
	Total	42	100%	1,024	100%
AP	Overstory	56	100%	4,424	80%
	Understory	-	0%	612	11%
	Composite	-	0%	462	8%
	Total	56	100%	5,498	100%
AS	Overstory	73	76%	8,800	65%
	Understory	8	8%	1,465	11%
	Composite	15	16%	3,285	24%
	Total	96	100%	13,549	100%
PA	Overstory	63	100%	6,813	90%
	Understory	-	0%	305	4%
	Composite	-	0%	483	6%
	Total	63	100%	7,602	100%
SA	Overstory	42	70%	6,908	68%
	Understory	5	8%	831	8%
	Composite	13	22%	2,468	24%
	Total	60	100%	10,207	100%
PL	Overstory	176	96%	39,841	89%
	Understory	5	3%	1,849	4%
	Composite	2	1%	3,016	7%
	Total	183	100%	44,707	100%
SB	Overstory	13	21%	7,647	46%
	Understory	27	<mark>44%</mark>	4,397	27%
	Composite	21	34%	4,514	27%
	Total	61	100%	16,558	100%
SW	Overstory	52	68%	8,885	74%
	Understory	8	11%	1,229	10%
	Composite	16	21%	1,815	15%
	Total	76	100%	11,929	100%
Grand Total		775		163,471	

¹ Thinning and selective logging were included with Managed Stand areas in order

4.4 Landbase Reconciliation

The differences in total landbase area between landbase version 9 (upon which yield curves were developed) and landbase version 12 (the final Millar Western landbase) are summarized in Table 4-10 and Table 4-11 for FMUs W11 and W13, respectively. There are very minor differences in natural stand landbase areas, upon which yield curves were developed. The largest difference is the reduction of 4,000 ha in the AW stratum for natural stands (a 7.8% change in stratum area) in FMU W13. This mainly represents A density aspen overstory stands which were remnant overstories and were subsequently redefined as managed stands.

	Stand Type										
DFMP Yield		Natural			Managed						
Stratum	LB9	LB12	Diff.	LB9	LB12	Diff.					
AW_AB	8,996	8,140	(856)	-	-	-					
AW_CD	41,607	41,554	(54)	3,289	3,492	203					
BW	124	130	6	-	-	-					
APAS_ABCD	4,468	4,488	21	977	1,892	914					
PASA_ABCD	5,165	5,027	(137)	1,476	1,594	118					
PL_AB	3,597	3,582	(15)	-	-	-					
PL_CD	6,962	6,844	(118)	806	1,162	356					
SB	-	-	-	-	-	-					
SW_AB	2,878	2,863	(15)	-	-	-					
SW_CD	5,209	5,116	(93)	1,053	1,484	431					
Total	79,006	77,744	(1,262)	7,601	9,625	2,024					

Table 4-10. Area differences (ha) between landbase version 9 and landbase version 12 by DFMP yield stratum and stand type, FMU W11.

Table 4-11. Area differences (ha) between landbase version 9 and landbase version 12 by DFMP yield stratum and stand type, FMU W13.

		Stand Type												
DFMP Yield		Natural			Managed			Thinning	L	Selective Logging ^{2,3,4}				
Stratum	LB9	LB12	Diff.	LB9	LB12	Diff.	LB9	LB12	Diff.	LB9	LB12	Diff.		
AW	56,458	52,397	(4,061)	5,427	5,447	19	2	2	(0)	-	-	-		
BW	1,021	1,024	3	-	80	80	1	1	-	-	-	-		
AP	5,288	5,498	210	192	527	335	17	17	(0)	-	-	-		
AS	13,845	13,549	(295)	852	5,562	4,710	4	4	(0)	-	-	-		
PA	7,522	7,602	79	2,995	2,647	(348)	45	45	0	61	61	(0)		
SA	10,276	10,207	(69)	7,263	6,774	(490)	8	8	(0)	624	711	87		
PL	44,385	44,707	322	20,646	20,802	156	1,132	1,132	1	-	-	-		
SB	16,719	16,558	(162)	179	179	0	74	69	(6)	-	-	-		
SW	12,029	11,929	(100)	4,789	4,876	87	3	3	(0)	-	-	-		
Total	167,544	163,471	(4,073)	42,343	46,892	4,549	1,285	1,280	(5)	685	772	87		

¹ Salvage and commercial thinning in natural stands; excludes selective logging.

² Selective logging took place in the Athabasca Flats vicinity of the Athabasca river using horse logging methods.

³ Includes blocks classified as planned in 2004 but that have subsequently been harvested.

⁴ DFMP yield strata are based on post-harvest assignment.

Specific yield curves were developed for the Athabasca Flats area in FMU W13. These involved the compositing of natural stand yield curves in order to create a single curve specific to the Athabasca Flats selective logging area. The differences in total landbase area between landbase version 9 and landbase version 12 are summarized in Table 4-12. Note that due to changes in definitions of isolated stands, the managed landbase area within the Athabasca Flats area increased by approximately 90 ha. However, the distribution of areas is very similar, as shown by the percent distribution of area.

Table 4-12. Area (ha) and percent differences between landbase version 9 and landbase version 12 by DFMP yield stratum and stand type, Athabasca Flats, FMU W13.

DFMP Yield	Area (ha)		% A	Area
Stratum	LB9	LB12	% LB9	% LB12
AW	54	55	7.8%	7.2%
AS	154	177	22.4%	22.9%
SA	138	156	20.2%	20.2%
LT	-	12	0.0%	1.5%
PL	53	53	7.7%	6.8%
SB	18	18	2.7%	2.4%
SW	268	301	39.2%	39.0%
Total	685	772	100.0%	100.0%

4.5 Plot Reconciliation

Plots were intersected with landbase 12 and assigned characteristics in the same manner as described in Sections 3.3 to 3.5. Plot attributes based on landbase 9 and landbase 12 were then compared.

Eligibility for Yield Curve Development

Plots that were eligible for yield curve development based on landbase version 9 may not be eligible for yield curve development based on landbase version 12. Differences in plot eligibility are summarized in Table 4-13.

Table 4-13. Comparison between plot assignments based on landbase 9 versus landbase 12, FMUs W11 and W13 combined.

	Landbase 12						
Landbase 9	Natural Eligible	Ineligible	Sampling Pre-Fire	Seismic	Total		
Natural Eligible	1,279	26	-	-	1,305		
Ineligible	6	388	-	-	394		
Sampling Pre-Fire	-	-	20	-	20		
Seismic	-	-	-	59	59		
Total	1,285	414	20	59	1,778		

A total of 6 plots were ineligible for inclusion in yield curve development based on landbase 9, but are eligible based on landbase 12. These plots were access deletions, rather than deletions based on stand characteristics. Not including these plots when they could have been included in yield curve development will not have introduced any bias into the data set used for curve fitting.

A total of 26 plots that were initially eligible for yield curve development based on landbase 9 were deemed ineligible based on landbase 12. Table 4-14 summarizes the plots by FMU, DFMP yield stratum and reason for the change.

Table 4-14. Breakdown of plots used in yield curve development based on landbase 9 that are now ineligible based on landbase 12.

DFMP Yield		Original	Removed	Removal	
FMU	Stratum	Location	Observations	Observations	Reason
W11	AW_AB	n/a	60	8	Managed
W13	AW	MC/VH	94	4	Managed
		W/BR	44	3	Managed
	PL	n/a	183	3	Managed
	SB		61	3	Managed
				5	Subj. Del.
Total			26	26	

A total of 21 of the 26 plots were removed because the stands are now defined as cutblocks rather than natural origin stands. These stands were primarily A density overstory stands which were in fact remnant stands left after harvesting. Including these plots should have negligible effect, or at least a conservative effect, given that the plots would be low volume plots relative to the remainder of the sample. Most of the yield strata have fairly high sample sizes, which should also ameliorate any effect the plots may have. The last five plots were removed due to subjective deletions. Again, assuming that these are low productivity stands (the reason for subjective deletion), any effect they would have on yield would be minimal. Volumes for the 26 plots were examined and the potential effects on yields are described here.

<u>FMU W11</u>

Eight AW_AB plots would be removed based on landbase 12 information. Seven out of the eight removed plots had a total volume of 0 m^3 /ha, and the eighth had a total volume of 64 m^3 /ha. Removing these plots would not lower yields.

<u>FMU W13</u>

Four AW_MC/VH plots would be removed based on landbase 12 information. In fact, these PSPs were subjectively removed from the PSP dataset before yield curve development, since these were identified as managed stand PSPs. Therefore no change would be made to existing curves.

Three AW_W/BR plots would be removed based on landbase 12 information; these have total volumes of 216, 50 and 168 m³/ha, all at an age of 108 years. The average across these three plots is 144 m³/ha, which is lower than volumes for all three yield curves (F, M and G) at the same age. Removal of these plots would not lower yields.

Three PL plots would also be removed; these have total volumes of 0, 17 and 0 m^3 /ha at 42 years. Removing these plots would not lower yields.

Five SB plots would be removed based on subjective deletions applied in landbase 12. These plots represent fairly high volumes, all at 147 years of age (136, 152, 87, 131 and 306 m^3 /ha). Average total volume is 162 m^3 /ha, which is very similar to the medium TPR curve at the same age (151 m^3 /ha). Most of the landbase area is comprised of medium TPR stands, with the second highest area comprised of good TPR stands. These volumes are in line with the volumes expected by an area-weighted yield curve across all TPRs, and therefore no net effect on volume is expected.

Three SB plots would be removed since these were harvested prior to the effective date of the landbase. These plots are all TPR good, high volume plots (299, 515 and 589 m³/ha at 57 years of age). These plots have the potential to affect yield curves, since they are high volume plots. However, Millar Western has an agreement in place with Alberta SRD, in which Millar Western will be subjectively removing approximately 50% of SB stands from their managed landbase. These will be low productivity (*i.e.*, low volume) stands, leaving only high volume stands on the landbase. Use of the existing SB yield curves will likely be an underestimate of potential yields, and as such, it is felt that using the existing curves is reasonable.

DFMP Yield Stratum Assignment

All plots that were used for yield curve development had the same DFMP yield stratum and age assignment based on landbase12 attributes, with the exception of plot # 406542-1-0-2004. This TSP was initially assigned to the PL DFMP yield stratum; based on landbase 12, the plot was reassigned to the AW DFMP yield stratum.

This was in fact a plot sampled in a PL stand. The majority of the PL stand was part of the unmanaged landbase due to deletions. The plot itself was located in a residual polygon sliver that was part of the managed landbase. The sliver removal process resulted in the plot being reassigned to an adjacent AW polygon.

As such, the use of this plot in PL yield curve development was correct.

5. Base Yield Curves, FMU W11

5.1 Overview

FMU W11 has 11 DFMP Yield Strata defined for the 2007-2016 DFMP (Table 2-9). Two of these are specific to the unmanaged landbase (LT and SB) and have no associated yield curves.

For each of the nine remaining DFMP yield strata, one natural stand empirical yield curve was fit using data collected within the FMU. Volume was fit as a function of stand age using *nonlinear regression* techniques. These are the base natural stand yield curves for FMU W11 (Table 5-1).

There is an assumption that harvested stands will return as *fully stocked* under standard management practices, since current reforestation standards enforce strict stocking limits. Plots from natural stands with a C or D crown closure class (based on the <u>defining layer</u>) were used as a proxy to represent managed stands (referred to as the *fully stocked method*). Volume as a function of age was fit for the APAS_ABCD and PASA_ABCD DFMP yield strata using fully stocked data.

No managed stand yield curves were developed for the AW_AB, PL_AB or SW_AB DFMP yield strata, since these were based on AB crown closure data (not fully stocked). New curves were not fit for the AW_CD, PL_CD or SW_CD yield strata since these curves were already fully stocked.

Area-weighted *composite yield curves* were also developed for natural stands in FMU W11. Five area-weighted curves were developed for natural stands: four to represent each broad cover group (D, DC, CD, and C) and one overall composite for the coniferous landbase (DC, CD and C combined). Curves were based on natural stand yield curves, weighted by the proportion of area of natural stands that each DFMP yield stratum currently represents within the managed landbase.

There are only 124 ha of birch in FMU W11, therefore, while a natural stand yield curve was developed to represent both FMUs, it is described under FMU W13 yield curves.

A full list of base yield curves for FMU W11 is provided in Table 5-1.

DFMP Yield	Broad Cover	Natural Stand	Managed Stand
Stratum	Group	Yield Curve Code	Yield Curve Code
AW_AB	D	W11_AW_AB_N	
AW_CD	D	W11_AW_CD_N	
BW	D	W11W13_BW_N ¹	
APAS_ABCD	DC	W11_APAS_ABCD_N	W11_APAS_CD_M
PASA_ABCD	CD	W11_PASA_ABCD_N	W11_PASA_CD_M
PL_AB	С	W11_PL_AB_N	
PL_CD	С	W11_PL_CD_N	
SW_AB	С	W11_SW_AB_N	
SW_CD	С	W11_SW_CD_N	
COMPOSITE	С	W11_COMP_C	
	CD	W11_COMP_CD	
	DC	W11_COMP_DC	
	D	W11_COMP_D	
	C/CD/DC	W11_COMP_C/CD/DC	

Table 5-1. Base DFMP yield curves, FMU W11.

bined curve for FMU W11 and FMU W13

5.2 Natural Stand Yield Curves

5.2.1 Background

In their Preliminary Forest Management Plan (PFMP) (Millar Western 2004e), Millar Western employed a limited number of yield strata and created a single set of yield curves to represent both natural and managed stands. Volume was modelled as a function of age, without incorporating the effects of site. As per the Terms of Reference, Millar Western followed the same process for the 2007-2016 DFMP, updated for new data and using new DFMP yield strata developed in consultation with SRD.

5.2.2 Yield Curve Development

Data from the base TSP/PSP dataset were used to fit natural stand yield curves (see Section 3.4 for information on data preparation). Only observations from with the FMU were used in curve development. Base natural stand vield curves for FMU W11 were fit using one of two models:

2-parameter model (2P):

 $Volume = a(Age)^b e^{(-a*Age)}$

2-parameter model with constant (2P+k):

$$Volume = a(Age)^{b} e^{\binom{-Age}{k}}$$

Where: Volume = gross merchantable stand volume (m³/ha)

Age = stand age at year of measurement

a, *b*, k = coefficients

Conifer and deciduous volume were modelled using one of the two equations. Where the constant k was required to achieve biologically reasonable curve form, values between 10 and 100 were tested to achieve the most biologically reasonable fit that also fit to the data. Total volume was calculated by summing conifer and deciduous volume. An exception to this process was the SW_CD stratum. Because the regression to fit deciduous volume would not *converge*, total volume was fit instead, and deciduous volume was calculated by subtracting coniferous volume from total volume. Where predicted coniferous volume was greater than predicted total volume, total volume was set equal to coniferous volume.

Model selection was qualitatively based on goodness-of-fit. Sample size, model form, coefficients and fit statistics (R^2) by yield curve are presented in Table 5-2. Yield curves are presented in Appendix IX.

DFMP Yield		Number of	Species	Model	Mod	el Coefficients		
Stratum	Yield Curve Code	Observations	Туре	Form	а	b	k	\mathbf{R}^2
AW_AB	W11_AW_AB_N	60	Coniferous	2P+k	2.83232E-09	5.53555329	30	0.06
			Deciduous	2P	2.57673E-02	2.40058385	-	0.12
AW_CD	W11_AW_CD_N	105	Coniferous	2P	1.23556E-02	2.05417925	-	0.08
			Deciduous	2P+k	6.66574E-04	3.24732640	40	0.25
APAS_ABCD	W11_APAS_ABCD_N	72	Coniferous	2P	1.23341E-02	2.15452925	-	0.07
			Deciduous	2P	2.13211E-02	2.32670923	-	0.10
PASA_ABCD	W11_PASA_ABCD_N	80	Coniferous	2P	2.03845E-02	2.36346047	-	0.04
			Deciduous	2P+k	1.15284E-10	7.02653883	20	0.11
PL_AB	W11_PL_AB_N	71	Coniferous	2P	1.11728E-02	2.23105867	-	0.20
			Deciduous	2P	2.27518E-02	1.83364340	-	0.01
PL_CD	W11_PL_CD_N	66	Coniferous	2P+k	1.03153E-06	4.59982047	40	0.38
			Deciduous	2P+k	4.24007E-09	5.63029813	30	0.05
SW_AB	W11_SW_AB_N	59	Coniferous	2P+k	6.77130E-05	3.59195275	40	0.08
			Deciduous	2P+k	1.62897E-09	5.81812483	30	0.06
SW_CD	W11_SW_CD_N	63	Coniferous	2P	1.85245E-02	2.37244915	-	0.08
			Total ¹	2P+k	4.04860E-06	4.60041870	30	0.18
Total		576						

Table 5-2. Model form and model coefficients, base natural stand yield curves, FMU W11.

¹ Regression to fit deciduous volume would not converge; instead, total volume was fit and predicted deciduous volume was calculated using predicted total volume minus predicted coniferous volume (or zero, whichever was greater).

5.3 Managed Stand Yield Curves

5.3.1 Background

For the 2007-2016 DFMP, Millar Western developed fully stocked⁹ yield curves to represent managed stands. Because most of the 2007-2016 DFMP yield strata in FMU W11 were split by

⁹ Fully stocked yield curves were fit using plots with C and D crown closure classes only.

crown closure class, CD crown closure class yield curves could be used to represent both natural and managed stands. The APAS_ABCD and PASA_ABCD DFMP yield strata were comprised of all crown closure classes, therefore fully stocked yield curves were required for these two DFMP yield strata.

5.3.2 Yield Curve Development

Base managed stand yield curves were developed using data from fully stocked natural stands as a proxy for managed stands. A subset of the TSP/PSP data used to fit base natural stand yield curves for FMU W11 was selected. Only those plots with a defining layer crown closure class of C or D were used to fit managed stand yield curves¹⁰. Base managed stand yield curves for FMU W11 were fit using one of two models:

2-parameter model (2P):

 $Volume = a(age)^b e^{(-a*age)}$

2-parameter model with constant (2P+k):

 $Volume = a(age)^{b}e^{\binom{-age}{k}}$

Where: Volume = gross merchantable stand volume (m³/ha)

Age = stand age at year of measurement

a, *b*, k = coefficients

Model selection was qualitatively based on goodness-of-fit. Sample size, model form, coefficients and fit statistics (R^2) by yield curve are presented in Table 5-3. Yield curves are presented in Appendix X.

Table 5-3. Model form and model coefficients, base managed stand yield curves, FMUW11.

DFMP Yield		Number of	Species	Model	Mode	el Coefficients ¹		_
Stratum	Yield Curve Code	Observations	Туре	Form	а	b	k	\mathbf{R}^2
APAS_ABCD	W11_APAS_CD_M	49	Coniferous	2P+k	7.94450E-06	3.88852729	50	0.11
			Deciduous	2P	3.09425E-02	2.48418486	-	0.05
PASA_ABCD	W11_PASA_CD_M	59	Coniferous	2P	2.03590E-02	2.37291321	-	0.03
			Deciduous	2P+k	3.54558E-10	6.85285570	50	0.04
Total		108						

¹⁰ This selection criterion differs from the one used for FMU W13 curves. For FMU W13, only stands with a C or D density <u>overstory</u> were selected, since the expectation is that managed stands will be single layer fully stocked stands. However, existing CD density natural stand curves were selected based on defining layer. Since these curves were being "reused" to represent managed stand curves, it was deemed reasonable to keep the same methodology within the suite of curves for FMU W11 rather than match with FMU W13.

5.4 Composite Yield Curves

5.4.1 Background

Composite yield curves provide an area-weighted estimate of volume over time across all natural stands within the FMU W11 managed landbase. These curves are necessary to provide comparisons from one DFMP to the next.

5.4.2 Yield Curve Development

Composite yield curves were created for natural stands within the FMU W11 managed landbase. Five area-weighted curves were developed for natural stands: four to represent each broad cover group (D, DC, CD, and C) and one overall composite for the coniferous landbase (DC, CD and C combined).

Each natural stand yield curve was weighted by the proportion of the total area of natural stands within the managed landbase. The total area of natural stands by DFMP yield stratum used for area-weighting was obtained from landbase version 12 and is provided in Table 5-4. Composite yield curves were developed by summing all area-weighted natural stand yield curves at each age.

Table 5-4. Total area (ha) of natural stands by DFMP yield stratum, FMU W11, for composite yield curve development (based on landbase version 12).

	Broad Cover	DFMP Yield	
Landbase	Group	Stratum	Area (ha)
Deciduous	D	AW_AB	8,140
		AW_CD	41,554
		BW	130
Coniferous	DC	APAS_ABCD	4,488
	CD	PASA_ABCD	5,027
	С	PL_AB	3,582
		PL_CD	6,844
		SB	-
		SW_AB	2,863
		SW_CD	5,116
Total			77,744

The composite yield curves for FMU W11 are presented in Appendix XI. Composite yield curves are shown against composite yield curves from previous plans in Appendix XIX.

6. Base Yield Curves, FMU W13

6.1 Overview

FMU W13 has 10 defined DFMP Yield Strata. One of these is specific to the unmanaged landbase (LT) and has no associated yield curves.

For each of the nine remaining DFMP yield strata, site-specific natural stand empirical yield curves were fit using data collected within the FMU area. Within each DFMP yield stratum, separate yield curves were developed for fair, medium and good site types. These are the base natural stand yield curves for FMU W13. An exception was the birch DFMP yield stratum, for which a single yield curve was fit (not site-specific). This yield curve is a combined yield curve for both FMU W11 and FMU W13, but since the majority of birch stands fall within FMU W13, curve development is included here.

There is an assumption that stands will return as fully stocked under standard management practices. Plots sampled in natural stands with an <u>overstory</u> C or D crown closure class were used as a proxy to represent fully stocked stands. These data were used to develop base managed stand yield curves for eight out of nine DFMP yield strata in FMU W13 using *site-specific methods* (there is no fully stocked managed stand yield curve for birch).

Composite natural stand yield curves were developed for natural stands in FMU W13. Five areaweighted curves were developed for natural stands: four to represent each broad cover group (D, DC, CD, and C) and one overall composite for the coniferous landbase (DC, CD and C combined). These curves were based on natural stand yield curves, weighted by the proportion of area of natural stands that each DFMP yield stratum currently represents within the managed landbase.

A complete list of base yield curves for FMU W13 is provided in Table 6-1.

DFMP Yield	Broad Cover		Natural Stand	Managed Stand
Stratum	Group	Site	Yield Curve Code	Yield Curve Code
AW	D	Fair	W13 AW F N	W13 AW F M
		Medium	W13 AW M N	W13 AW M M
		Good	W13_AW_G_N	W13 AW G M
BW	D	All	W11W13 BW N1	
AP	DC	Fair	W13_AP_F_N	W13_AP_F_M
		Medium	W13_AP_M_N	W13_AP_M_M
		Good	W13_AP_G_N	W13_AP_G_M
AS	DC	Fair	W13_AS_F_N	W13_AS_F_M
		Medium	W13_AS_M_N	W13_AS_M_M
		Good	W13_AS_G_N	W13_AS_G_M
PA	CD	Fair	W13_PA_F_N	W13_PA_F_M
		Medium	W13_PA_M_N	W13_PA_M_M
		Good	W13_PA_G_N	W13_PA_G_M
SA	CD	Fair	W13_SA_F_N	W13_SA_F_M
		Medium	W13_SA_M_N	W13_SA_M_M
		Good	W13_SA_G_N	W13_SA_G_M
PL	С	Fair	W13_PL_F_N	W13_PL_F_M
		Medium	W13_PL_M_N	W13_PL_M_M
		Good	W13_PL_G_N	W13_PL_G_M
SB	С	Fair	W13_SB_F_N	W13_SB_F_M
		Medium	W13_SB_M_N	W13_SB_M_M
		Good	W13_SB_G_N	W13_SB_G_M
SW	С	Fair	W13_SW_F_N	W13_SW_F_M
		Medium	W13_SW_M_N	W13_SW_M_M
		Good	W13_SW_G_N	W13_SW_G_M
COMPOSITE	С	All	W13_COMP_C	
	CD	All	W13_COMP_CD	
	DC	All	W13_COMP_DC	
	D	All	W13_COMP_D	
	C/CD/DC	All	W13_COMP_C/CD/I	DC

Table 6-1. Base DFMP yield curves, FMU W13.

¹ Combined curve for FMU W11 and FMU W13.

Note that in the 2007-2016 DFMP, there is no separate yield curve for Windfall Burn stands. An analysis of data collected inside and outside of the Windfall burn area indicated that stands within the Windfall burn boundary were similar enough to merit inclusion with the rest of the natural PL stands. Results from this analysis are presented in Appendix VI.

6.2 Natural Stand Yield Curves

6.2.1 Background

For the last DFMP, a single yield curve was fit for each DFMP yield stratum in FMU W13 using *nonlinear regression* methods (Millar Western 2000). Volume was fit as a function of stand age using nonlinear regression techniques. In order to develop site-specific natural stand yield curves that reflect the effect of site on productivity, *TPR scaling* was used.

The empirically-fit yield curve was assumed to represent medium TPR sites. Good TPR sites were assumed to have an increased volume, while fair TPR sites were assumed to have a decreased volume relative to the medium TPR curve. As such, TPR-scaled curves were

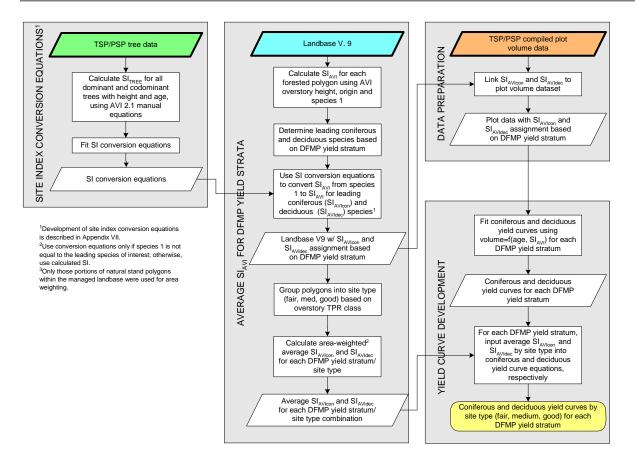
developed where the good TPR curve was created by scaling the medium curve upwards by 33%, and the fair TPR curve was created by decreasing the medium curve downwards by 25%.

For the 2007-2016 DFMP, curves representing the effects of site were again required. Databased curve development was preferable over assumptions regarding the effect of site, providing that an appropriate method could be developed. A number of factors influenced the selection of a method for developing yield curves for natural stands in FMU W13:

- 1. There were insufficient data to fit individual yield curves for each TPR x DFMP yield stratum combination.
- 2. Ecosite maps exist for both FMUs. Although these maps provide a good representation of the distribution of ecosites across the landbase, accuracy in predicting ecosite for a specific polygon to the ecosite level was generally under 50% (Millar Western 2005d). Even if maps were more accurate, some ecosite types would likely be poorly represented by plot data, since sampling was not stratified to target ecosite types.
- 3. Equations for predicting site index based on inventory attributes were available in the AVI 2.1 manual (AFLW 1991). Predicting AVI-based site index and using this site index to develop yield projections by stand age and site type (fair, medium and good productivity site) would allow investigation of the effects of site index changes on volume predictions (*e.g.*, site index increase for pine), and to tie plot data to inventory attributes.

As such, the decision was made to develop empirical yield curve predictions as a function of both stand age and stand AVI-based site index. This is referred to as the site-specific method.

6.2.2 Yield Curve Development


Yield curve development consisted of two main components:

- 1. Fitting empirical yield curves (volume is a function of AVI-based site index and stand age);
- 2. Calculate average AVI-based site index¹¹ by site type (fair, medium and good) based on area of natural stands within the managed landbase; use these values as inputs into the empirical yield curves to create a set of site-specific yield curves.

Figure 6-1 provides an overview of the process, which is described in subsequent sections.

¹¹ Area-weighted AVI-based site index based on total area of natural stands by DFMP yield stratum and TPR.

Figure 6-1. Flow chart for natural stand yield curve development, FMU W13.

STEP 1. Fitting Empirical Yield Curves Using Plot Data

Data from the base TSP/PSP dataset were used to fit natural stand yield curves (see Section 3.4 for more information). Only data collected within FMU W13 were used for empirical yield curve development, with the exception of the BW DFMP yield curve (BW is an FMU-wide yield curve, therefore plot data from FMU W11 were also included (6 plots)).

In order to fit empirical yield curves, the following were required for each observation: DFMP yield stratum, plot volume (m^3/ha), AVI-based site index for the leading coniferous species (SI_{AVIcon}), AVI-based site index for the leading deciduous species (SI_{AVIdec}), and stand age. All of this information, with the exception of the site index values, was obtained using the data compilation and plot attribute assignment methods described in Section 3.

AVI-based site index was calculated for the leading conifer and deciduous species as follows:

1. Site index for overstory species 1 (SI_{AVIsp1}) was calculated for each landbase polygon in FMU W13 using overstory AVI attributes (species 1, height, stand age)¹². The equations provided in the AVI 2.1 manual (AFLW 1991) were used for calculating site index.

¹² Polygons with height ≤ 2 m and polygons with breast height age < 0 were excluded from calculations.

- 2. A leading conifer species and leading deciduous species was assigned to each landbase polygon <u>based on its DFMP yield stratum assignment</u> (Table 6-2). The leading deciduous species was assumed to be AW for all stands (whether deciduous species were present or not), since AVI-based site index does not differentiate deciduous by species. In deciduous stands with no conifer present, the leading conifer was assumed to be white spruce¹³.
- 3. If the leading coniferous species was not the same as overstory species 1, site index conversion equations¹⁴ were used to convert SI_{AVIsp1} to an AVI-based site index for the leading coniferous species (SI_{AVIcon}).
- 4. If the leading deciduous species was not the same as overstory species 1, site index conversion equations were used to convert SI_{AVIsp1} to an AVI-based site index for the leading deciduous species (SI_{AVIdec}).
- 5. The calculated site index values for each leading species (SI_{AVIcon}, SI_{AVIdec}) were linked to each observation using AVI polygon number.

Table 6-2. Leading coniferous and deciduous species as a function of DFMP yield stratum.

DFMP Yield	Leading Species				
Stratum	Coniferous	Deciduous			
AW	SW	AW			
AP	PL	AW			
AS	SW or SB ¹	AW			
PA	PL	AW			
SA	SW or SB ¹	AW			
PL	PL	AW			
SB	SB	AW			
SW	SW	AW			

¹ Whichever occurs first in defining layer species composition.

Once all plot information was complete, a modified version of the 2-parameter model with constant was used to fit site-specific yield curves. In the modified form, parameter 'a' was replaced by $(a_0 + a_1*SI)$ in order to represent site:

2-parameter model with constant (2P+k):

$$Volume_{con} = (a_0 + a_1 * SI_{AVIcon})(Age)^b e^{\binom{-Age}{k}}$$
$$Volume_{dec} = (a_0 + a_1 * SI_{AVIdec})(Age)^b e^{\binom{-Age}{k}}$$

¹³ In pure C stands with no deciduous and pure D stands with no conifer, a site index must still be calculated. Zero volumes must be included in model fitting, and site index is required in order to be used in the model fitting process.

¹⁴ Local site index conversion equations were developed using Millar Western data. A description of the development of site index conversion equations is provided in Appendix VII.

Where: $Volume_{con/dec}$ = gross merchantable coniferous/deciduous stand volume (m³/ha)

Age = stand age at year of measurement

 $SI_{AVIcon/dec}$ = AVI-based coniferous/deciduous site index for the leading species

 $a_0, a_1, b, k = coefficients$

Results of model fitting are presented in Table 6-3. Note that for the birch yield curves and the deciduous component of the black spruce stratum, a_1 is set to zero. Under this condition, the yield curve equation reverts to its original form, which is a curve without site. Birch stands comprise a small area of the landbase, therefore site-specific curves were not required. Black spruce stands had very little deciduous volume and site-specific curves could not be obtained because the regression would not converge.

DFMP Yield		Number of	Species	Model		Model Coeffi	icients		
Stratum	Yield Curve Code	Observations	Туре	Form	\mathbf{a}_0	\mathbf{a}_1	b	k	\mathbf{R}^2
AW	W13_AW_FMG_N	138	Coniferous	2P+k	-2.33681E-04	1.08647E-04	2.72026827	50	0.07
			Deciduous	2P+k	-1.04241E-03	8.37622E-05	3.59637947	30	0.39
BW^1	W11W13_BW_N	42	Coniferous	2P+k	1.32573E-05	0	4.16842888	30	0.10
			Deciduous	2P+k	2.09473E-13	0	9.53249021	10	0.24
AP	W13_AP_FMG_N	56	Coniferous	2P+k	-8.79661E-04	3.98352E-04	2.61493295	50	0.17
			Deciduous	2P+k	-9.13246E-06	7.65765E-07	4.59041438	30	0.43
AS	W13_AS_FMG_N	96	Coniferous	2P+k	5.49044E-03	1.88844E-04	2.51203700	50	0.12
			Deciduous	2P+k	7.43397E-06	6.83763E-07	4.19012503	30	0.05
PA	W13_PA_FMG_N	63	Coniferous	2P+k	-5.82439E-05	6.80554E-06	3.70901170	50	0.42
			Deciduous	2P+k	2.44348E-06	5.37161E-08	4.37683544	30	0.13
SA	W13_SA_FMG_N	60	Coniferous	2P+k	-1.25012E-02	2.31891E-03	2.36589878	50	0.15
			Deciduous	2P+k	2.36474E-06	2.87292E-07	4.30872600	30	0.08
PL	W13_PL_FMG_N	183	Coniferous	2P+k	-1.45575E-04	2.66634E-05	3.40972456	50	0.59
			Deciduous	2P+k	-1.18934E-06	1.42356E-07	4.52848785	30	0.17
SB	W13_SB_FMG_N	61	Coniferous	2P+k	-4.65772E-03	8.45847E-04	2.75853831	50	0.26
			Deciduous	2P+k	3.88572E-09	0	5.10489901	30	0.02
SW	W13_SW_FMG_N	76	Coniferous	2P+k	3.75340E-05	9.75111E-06	3.46887978	50	0.25
			Deciduous	2P+k	-5.87826E-07	4.68658E-08	4.97414266	30	0.17
Total		775							

T-11. () M. J. 16	· · · · · · · · · · · · · · · · · · ·	- IJ TN/II W/12
Table 6-3. Model form and model coeffi	icients, base natural stand y	field curves, FMU w15.

¹ The BW curve is a combined curve for FMU W11 and FMU W13. The majority of existing stands are within FMU W13.

STEP 2. Determining Average Site Index By Site Type and Create Site-Specific Curves

The process in Step 1 developed a yield curve for each DFMP yield stratum as a function of AVI-based site index and stand age, however, the goal was to develop three separate yield curves for each DFMP yield stratum by site type: fair, medium and good. To do so, the average site index of natural stands by site type was required as an input to the model. This was calculated using:

- 1. Take all natural stands within the managed landbase from Step 1 (each will have a calculated SI_{AVIcon} and SI_{AVIdec}).
- 2. Assign stands into site types (fair, medium, good) based on overstory TPR.

- 3. For each DFMP yield stratum and site type, calculate the average area-weighted deciduous and coniferous site index for natural stands in the managed landbase. Average area-weighted site index values by DFMP yield stratum and site type are presented in Table 6-5.
- 4. For each DFMP yield stratum, input the average conifer site index for each site type into the fitted equation for coniferous volume, to obtain three site-specific curves for conifer volume. Repeat using average deciduous site index to obtain three site-specific curves for deciduous volume.
- 5. Total volume is equal to coniferous volume plus deciduous volume for each site type.

Table 6-4. Rules for assigning site type based on leading species site index.

Leading	Site Index	Site Index Range (m) by Site Type					
Species	Fair	Medium	Good				
AW	<14.05	14.05-18.05	>18.05				
PL	<12.05	12.05-16.05	>16.05				
SB	<7.05	7.05-10.05	>10.05				
SW	<10.55	10.55-15.55	>15.55				

Table 6-5. Average site index values used as inputs to the site-specific empirical yield curve model, base natural stand yield curves, FMU W13.

DFMP Yield	Site	Site Inc	lex (m)
Stratum	Туре	Coniferous	Deciduous
AW	Fair	12.4	14.9
	Mediun	14.5	17.4
	Good	17.3	20.5
BW	n/a	-	-
AP	Fair	14.2	14.8
	Mediun	16.5	17.1
	Good	18.9	19.6
AS	Fair	11.9	14.6
	Mediun	14.0	17.1
	Good	16.8	20.3
PA	Fair	10.8	11.1
	Mediun	14.5	14.7
	Good	17.3	17.6
SA	Fair	11.4	13.9
	Mediun	13.7	15.9
	Good	16.7	19.4
PL	Fair	10.9	11.1
	Mediun	14.3	14.6
	Good	17.1	17.4
SB	Fair	7.6	11.0
	Mediun	9.1	13.1
	Good	11.9	17.2
SW	Fair	10.3	12.0 ¹
	Mediun	13.9	15.8
	Good	16.9	19.2

¹ A site index of 13.0 was used as an input since the model did not perform adequately with site index 12.0.

Site-specific natural stand yield curves for FMU W13 are presented in Appendix XII.

6.3 Managed Stand Yield Curves

6.3.1 Background

For the 1997-2006 DFMP, managed stand yield curves were developed by applying an 11% increase to natural stand yield curves to account for full stocking in managed stands (*percent increase method*): 15% to account for full stocking minus 4% to account for roads and landings.

For the 2007-2016 DFMP, the <u>fully stocked method</u>, was used. Managed stand base yield curves were developed using data from fully stocked natural stands as a proxy for mature managed stand data. Because site index was based on overstory attributes for modelling, plots with an <u>overstory</u> crown closure class of C or D, rather than plots with a defining layer crown closure class of C or D, were used in model development.

6.3.2 Yield Curve Development

The same two steps used in Section 6.2.2 to develop site-specific yield curves for natural stands were applied to develop site-specific yield curves for managed stands.

STEP 1. Fitting Empirical Yield Curves Using Plot Data

Fully stocked plots were used to fit site-specific yield curves in the same manner as described for natural stands. Only plots with an overstory AVI crown closure class of C or D were used to fit yield curves. Again, black spruce stands had very little deciduous volume and site-specific curves could not be obtained because the regression would not converge. As such, a₁ was set to zero, creating a non-site-specific version of the 2P+k equation. No managed stand yield curve was developed for the BW DFMP yield stratum. Model selection was based on goodness-of-fit. Sample size, model form and coefficients are presented in Table 6-6.

DFMP Yie	ld	Number of	Species	Model		Model Coeffi	cients		
Stratum	Yield Curve Code	Observations	Туре	Form	\mathbf{a}_0	\mathbf{a}_1	b	k	\mathbf{R}^2
AW	M_AW_FMG	91	Coniferous	2P+k	-7.80559E-06	2.38931E-05	3.03334163	50	0.10
			Deciduous	2P+k	-1.96632E-03	1.57908E-04	3.47141756	30	0.38
AP	M_AP_FMG	53	Coniferous	2P+k	-3.03495E-04	3.35352E-04	2.63470234	50	0.17
			Deciduous	2P+k	-2.90775E-06	2.97724E-07	4.72953880	30	0.49
AS	M_AS_FMG	72	Coniferous	2P+k	5.27349E-03	6.36027E-05	2.55903098	50	0.09
			Deciduous	2P+k	9.27203E-05	8.92729E-07	3.82756270	30	0.04
PA	M_PA_FMG	57	Coniferous	2P+k	-3.80271E-05	7.12497E-06	3.62777296	50	0.42
			Deciduous	2P+k	-9.34626E-08	7.01941E-08	4.59290202	30	0.14
SA	M_SA_FMG	35	Coniferous	2P+k	6.00585E-02	1.36720E-02	1.98113257	40	0.07
			Deciduous	2P+k	3.82389E-04	4.93347E-06	3.72718788	20	0.00
PL	M_PL_FMG	135	Coniferous	2P+k	-1.10564E-04	3.85675E-05	3.28229877	50	0.53
			Deciduous	2P+k	-1.28660E-06	1.34248E-07	4.60287037	30	0.18
SB	M_SB_FMG	11	Coniferous	2P+k	-2.10922E-04	2.90403E-05	3.64611426	40	0.43
			Deciduous	2P+k	8.50015E-17	0	2.10000000	30	n/a ¹
SW	M_SW_FMG	37	Coniferous	2P+k	5.15995E-04	6.18814E-06	3.21266782	50	0.07
			Deciduous	2P+k	-1.16603E-08	9.29119E-10	5.86111614	30	0.21
Total		491							

Table 6-6. Model form and coefficients, base managed stand yield curves, FM	IU W13.
---	---------

¹ All deciduous volumes are zeros; although convergence criteria were met when running the regression, CSS=0 was obtained. Since R²=1-SSE/CSS, R² could not be obtained.

STEP 2. Determining Average Site Index By Site Type and Create Site-Specific Curves

Average site index for each site class (fair, medium and good) was calculated in the same manner as described in Section 6.2.2. Only stands in the managed landbase with an overstory AVI crown closure class of C or D were used to calculate average site indices by site type (presented in Table 6-7). These values were input into the fitted equations to create site-specific yield curves for each DFMP yield stratum.

Table 6-7. Average site index values used as inputs to the site-specific empirical yield curve model, base managed stand yield curves, FMU W13.

DFMP Yield	Site	Site Inc	dex (m)
Stratum	Туре	Coniferous	Deciduous
AW	Fair	12.4	15.0
	Medium	14.7	17.5
	Good	17.2	20.4
BW	n/a	-	-
AP	Fair	14.3	14.9
	Medium	16.5	17.2
	Good	19.0	19.8
AS	Fair	12.0	14.7
	Medium	14.1	17.2
	Good	17.0	20.9
PA	Fair	10.5	10.8
	Medium	14.3	14.6
	Good	17.2	17.5
SA	Fair	11.8	14.2
	Medium	13.7	15.7
	Good	16.8	19.4
PL	Fair	10.7	10.9
	Medium	14.4	14.6
	Good	17.1	17.3
SB	Fair	6.8 ⁻¹	9.9
	Medium	8.5	12.3
	Good	11.6	16.8
SW	Fair	10.0	11.3 ²
	Medium	13.8	15.7
	Good	16.6	18.8

¹ A site index of 7.5 was used as an input since the model

did not perform adequately with site index 6.8.

² A site index of 13.0 was used as an input since the model

did not perform adequately with site index 11.3.

Many of the fitted base managed stand yield curves show volumes below natural stand yields (AP, AS, PA and SW good site types, and all SB site types), and the SA managed stand yield curve shows poor curve form (volume peaks and declines too early). The SA curve, and curves with predicted volumes below natural stand yield curve volumes, will not be used in timber supply analysis. Instead, the natural stand yield curves will be used (see Chapter 8). This is an "inverse capping" method to reflect the fact that, under managed stand conditions, volumes should be at least the same as natural stand volumes, if not higher.

Base managed stand yield curves for W13 are presented in Appendix XIII.

6.4 Composite Yield Curves

6.4.1 Background

Composite yield curves provide an area-weighted estimate of volume over time across all natural stands within the FMU W13 managed landbase. These curves are necessary to provide comparisons from one DFMP to the next.

6.4.2 Yield Curve Development

Composite yield curves were created for natural stands within the FMU W13 managed landbase. Five area-weighted curves were developed for natural stands: four to represent each broad cover group (D, DC, CD, and C) and one overall composite for the coniferous landbase (DC, CD and C combined).

Each natural stand yield curve by site type was weighted by the proportion of the total area of natural stands within the managed landbase. The total area of natural stands by DFMP yield stratum and TPR was obtained from landbase version 12 and is provided in Table 6-8. Composite yield curves were developed by summing all area-weighted natural stand yield curves at each age.

Table 6-8. Total area (ha) of natural stands by DFMP yield stratum and TPR, FMU W13, for composite yield curve development (based on landbase version 12).

	Broad Cover	DFMP Yield		TPR		
Landbase	Group	Stratum	Fair	Medium	Good	- Total
Deciduous	D	AW-W/BR	4,074	16,402	239	20,714
		AW-MC/VH	5,005	20,992	5,686	31,683
		\mathbf{BW}^{1}	258	530	237	1,024
Coniferous	DC	AP	873	3,598	1,028	5,498
		AS	2,486	9,369	1,694	13,549
	CD	PA	457	4,009	3,136	7,602
		SA	268	6,872	3,067	10,207
	С	PL	4,687	28,029	11,991	44,707
		SB	1,155	11,580	3,822	16,558
		SW	541	8,434	2,954	11,929
Total		Total	19,804	109,814	33,853	163,471

¹ Total area, not area by TPR, was used for area-weighted BW volumes.

The composite yield curves for FMU W13 are presented in Appendix XIV. Composite yield curves are shown against composite yield curves from previous plans in Appendix XIX.

7. Modified Yield Curves, FMU W13

7.1 Overview

Base yield curves have been modified to reflect specific applied silvicultural treatments or to represent geographically localized areas within the DFA with recognized differences in stand composition and/or growth. For example:

- 1. The silvicultural treatment in question lacks suitable data for the development of empirical yield curves, yet there is sufficient research to indicate that adjustments are required. Treatments include site index increase in managed pine stands, commercial thinning, and *salvage thinning*).
- 2. The silvicultural treatment in question is a small area comprised of multiple DFMP strata; data collection by DFMP yield stratum to fit separate empirical yield curves is unrealistic. The Athabasca Flats selective thinning area is one such treatment.
- 3. A geographically localized area is recognized to exhibit different yields at harvest age from the rest of the FMU area. In aspen stands, there is a recognized difference in yields between the Whitecourt and Blue Ridge (W/BR) subunits and the McLeod and Virginia Hills (MC/VH) subunits.

Modified yield curves for FMU W13 are listed in Table 7-1.

	Curve	DFMP Yield			
Modifier	Modified	Stratum	Location	Site	Yield Curve Code
Site Index	Base Managed	PL	W13	Fair	W13_PL_F_SI
Increase				Medium	W13_PL_M_SI
				Good	W13_PL_G_SI
Commercial	Base Natural	PL	W13	Fair	W13_PL_F_CT
Thinning				Medium	W13_PL_M_CT
				Good	W13_PL_G_CT
		SB	W13	Fair	W13_SB_F_CT
				Medium	W13_SB_M_CT
				Good	W13_SB_G_CT
Salvage	Base Natural	PL	W13	Fair	W13_PL_F_ST
Thinning				Medium	W13_PL_M_ST
				Good	W13_PL_G_ST
		SB	W13	Fair	W13_SB_F_ST
				Medium	W13_SB_M_ST
				Good	W13_SB_G_ST
Athabasca Flats Pre-Treat	Base Natural	COMPOSITE	W13	All	W13_ALL_AF_Pre
Athabasca Flats Post-Treat	Base Natural	COMPOSITE	W13	All	W13_ALL_AF_Post
Subunit	Base Natural	AW	Whitecourt/	Fair	W13_AW_F_N_W/BR
			Blue Ridge	Medium	W13_AW_M_N_W/BR
				Good	W13_AW_G_N_W/BR
			McLeod/	Fair	W13_AW_F_N_MC/VH
			Virginia	Medium	W13_AW_M_N_MC/VH
			Hills	Good	W13_AW_G_N_MC/VH

Table 7-1. Modified DFMP yield curves, FMU W13.

7.2 Pine Site Index Increase Yield Curves

Pine site index increase yield curves were developed to incorporate the anticipated increase in site productivity in managed over natural stands. Site index increase will represent yields in managed stands, replacing base managed stand yield curves for PL. A summary of relevant work in Alberta that supports pine site index increase in managed stands (Huang *et al.* 2004, Dempster 2004) is presented in Appendix VIII. A local study comparing natural and managed stand site index was undertaken by The Forestry Corp. on behalf of Millar Western in 1999 (The Forestry Corp. 1999) and is also summarized in this Appendix.

Based on the available information, site index in managed stands is expected to increase approximately 3.5 to 5 m above that of natural stands across all site types. Results of studies in Alberta (Dempster 2004, The Forestry Corp. 1999) indicate that the magnitude of increase varies based on site productivity, whether expressed in terms of pre-harvest site index or soil nutrient status. Initial use of a predictive equation developed in the 1999 TFC study resulted in site index increase values unacceptable to Alberta. As such, results from the study produced by the Foothills Growth and Yield Association (Dempster 2004), of which Millar Western is currently a member, were used.

Site index increase values were assessed by site type, with values of 6.7 m for poor sites, 2.8 m for medium sites, and 0.3 m for good sites. These values were added to average natural stand site index values calculated in Section 6.2 to produce managed stand site index values (Table 7-2).

 Table 7-2. Average natural stand site index by site type, calculated FGYA site index increase, and new managed stand site index values for pine site index increase yield curves.

	Natural Stand	Site Index	Managed Stand
Site	Site Index (m)	Increase (m)	Site Index (m)
Туре	\mathbf{SI}_{f}	(FGYA Values)	SI_m
Fair	10.9	6.7	17.6
Medium	14.3	2.8	17.1
Good	17.1	0.3	17.4

These increased site index values were used as an input into the base natural stand yield curve equation for PL, creating site index increase yield curves for fair, medium and good sites in the PL stratum. Curves are presented in Appendix XV.

The total managed landbase area assignment is presented in Table 7-3. The majority of the PL stratum is comprised of medium TPR stands, which underwent a site index increase of 2.8 m. Because the final site index value was very similar across all site types, the medium TPR curve was selected to represent all managed pine stands. This is the most conservative of the three curves and is very similar to the natural stand "good" curve.

Table 7-3. Managed landbase area (ha) by TPR and stand type, PL stratum, FMU W13 (based on landbase version 12).

Stand		TPR		_
Туре	Fair	Medium	Good	Total
Natural	4,687	28,029	11,991	44,707
Cutblock	2,030	12,567	6,205	20,802
Thinning	45	572	516	1,132
Total	6,762	41,167	18,711	66,641

7.3 Thinning Yield Curves

Thinning yield curves were developed to provide volume estimates for 1,285 ha of existing thinned stands within FMU W13. The majority of stands are within the PL DFMP yield stratum, with a smaller proportion of stands within the SB DFMP yield stratum (see Table 4-2, Section 4.3). Minor areas belonging to other DFMP yield strata will be dealt with through timber supply analysis assumptions. For the PL and SB DFMP yield strata, thinning curves were developed by modifying the respective base natural stand yield curves for each stratum.

Two types of thinning curves were developed: commercial thinning yield curves and salvage thinning yield curves. Commercial thinning is the thinning of younger stands, where a recovery after harvest is expected. Commercial thinning allows Millar Western to utilize a portion of the standing timber without waiting for the entire stand to become merchantable. Salvage thinning is a thinning in older stands where the age of the stand reduces the likelihood of a positive growth response. Salvage thinning allows removal of overmature volume where stands are expected to begin to break up before final harvest.

For yield curve development, natural stand yield curves were modified to reflect volume removal at a specified average stand age, with or without stand recovery. Assumptions followed the 1997-2006 DFMP:

Commercial thinning:

- Thinning event at 45 years
- 35% removal
- Assume volume recovery to 90% of base natural stand yield curve volume in 15 years.

Salvage thinning:

- Thinning event at 90 years
- 33% removal
- No recovery (no assumption of volume recovery; volume remains at 67% of the base natural stand yield curve until final harvest)

These curves are intended to represent existing thinned stands (1,280 ha). No additional thinning is planned. Thinning yield curves are presented in Appendix XVI.

7.4 Athabasca Flats Selective Logging Yield Curves

Selective logging took place in the Athabasca Flats area (adjacent to the Athabasca River) using horse logging methods. Yield curves are required to represent standing volume before and after treatment. Sampling took place in 2005, to address data needs for yield curve development.

Data Processing

Data were processed in a similar manner to the TSP/PSP dataset. Spatial plot locations (*horse_logging_sampling_plots_320.shp*) were intersected with the Millar Western spatial landbase, version 9 (*mwfp_lb9a_model2.shp*) in order to obtain attribute information. Seven observations were removed because plots were not in the managed landbase. No additional deletions were required.

DFMP yield strata was reassigned after treatment, so in order to obtain DFMP yield stratum <u>prior</u> to treatment, an earlier version of DFMP yield stratum assignment was obtained based on the original (pre-treatment) AVI attributes¹⁵. Stand age at year of sampling was calculated as 2005 minus the origin year from the defining layer.

¹⁵ F_YC is the final (post-treatment) DMFP yield stratum assignment. In order to obtain the pre-treatment DFMP yield stratum assignment, one of three fields was used, depending on which layer was identified as the defining layer: STRATA_YC (overstory), USTRATA_YC (understory) or CSTRATA_YC (composite).

Volumes were compiled as described in Section 3.6, with one notable difference. Stump diameters from felled trees were used to estimate diameter at breast height for harvested trees using equations from Huang (1994b). Estimated diameters were used to predict total tree height. Individual tree volumes were then calculated for each felled tree. These volumes were rolled up to the plot-level, representing the volume of timber removed from each plot. Thus, two volumes were calculated for each plot: pre-treatment volume and post-treatment volume (live trees only).

Landbase polygons identified as within Athabasca Flats areas were extracted from the landbase file and assigned an age and DFMP yield stratum in the same manner as described for plots on this page. Areas and number of plots by DFMP yield stratum are presented in Table 7-4.

Table 7-4. Total managed landbase area (ha) and number of plots within the Athabasca Flats selective logging area by pre-treatment DFMP yield stratum and eligibility (areas based on landbase version 9).

Eligibility	DFMP Yield Stratum	Area (ha)	Number of Plots
Managed	AW	54	1
(eligible)	AS	154	18
	SA	138	6
	PL	53	6
	SB	18	3
	SW	268	16
	Total	685	50
Unmanaged		229	7
Total		914	57

Yield Curve Development

A composite yield curve was developed for the Athabasca Flats selective logging area using area-weighting of base natural stand yield curves for FMU W13. Areas for area-weighting are those presented in Table 7-4 and are based on landbase version 9 (see Section 4.4 for reconciliation with landbase version 12).

Table 7-5. Areas (ha) used for creating a composite natural stand yield curve, Athabasca Flats selecting logging area, using landbase version 9.

DFMP Yield		TPR		
Stratum	Fair	Medium	Good	Total
AS	1	67	86	154
AW	1	31	22	54
PL	-	17	36	53
SA	-	68	70	138
SB	-	2	16	18
SW	-	163	106	268
Total	2	348	336	685

Pre-treatment plot volumes were then used to localize the composite yield curve. Percent difference was calculated for conifer and deciduous volume separately:

$$PctVolumeDiff = \frac{\sum \left(\frac{Volume_{ACTUAL, plot} - Volume_{PREDICTED, curve}}{Volume_{PREDICTED, curve}}\right)}{n_{plot}} *100$$

Where: PctVolumeDiff = average % difference between predicted and observed volume $Volume_{Actual,plot}$ = observed gross merchantable stand volume (m³/ha) $Volume_{Pred,curve}$ = predicted gross merchantable volume (m³/ha) at Age_i

 Age_j = stand age at year of measurement

 n_{plot} = number of sampled plots

The composite yield curve was localized for conifer and deciduous volume separately using:

 $VolumeComposite_{PRETREAT, Age_i} = VolumeComposite_{Age_i} * (1 + PctVolumeDiff)$

Where: *VolumeComposite*_{PRETREAT, Agei} = pre-treatment composite volume (m^3 /ha), Age_j

*VolumeComposite*_{Agej} = composite volume (m³/ha), Age_j

PctVolumeDiff = average % difference between predicted and observed volume

Post-harvest yield curves were then created to reflect volume removed. An average percent volume harvested was calculated using observed pre-treatment and post-treatment volumes calculated for each plot for deciduous and coniferous volumes, separately:

$$PctVolumeHarvested = \frac{\sum \left(\frac{Volume_{PRETREAT,plot} - Volume_{POSTTREAT,plot}}{Volume_{PRETREAT,plot}}\right)}{n_{plot}} *100$$

Where: *PctVolumeHarvested* = average percent volume removed

 $Volume_{PRETREAT,plot}$ = gross merchantable stand volume (m³/ha) before treatment $Volume_{POSTTREAT,plot}$ = gross merchantable stand volume (m³/ha) after treatment

 n_{plot} = number of sampled plots

This percent removal was applied to reduce the localized composite yield curve, to reflect standing volumes in thinned stands, as follows:

 $VolumeComposite_{POSTTREAT, Age_i} = VolumeComposite_{PRETREAT, Age_i} * (1 - PctVolumeHarvested)$

Where: *VolumeComposite*_{POSTTREAT, Agei} = post-treatment composite volume (m^3/ha), Age_j

*VolumeComposite*_{PRETREAT, Agej} = pre-treatment composite volume (m^3 /ha), Age_j

 $Age_j = \text{stand age}$

PctVolumeHarvested = average percent volume removed

No assumption of post-treatment volume recovery was applied to these curves.

Pre-treatment and post-treatment *Athabasca Flats selective logging yield curves* are presented in Appendix XVII.

7.5 Subunit-Specific Aspen Yield Curves

Within FMU W13, there are recognized differences in aspen stand volume by subunit. As a result, separate subunit-specific AW yield curves were developed for natural stands in the Whitecourt/Blue Ridge and McLeod/Virginia Hills subunits. Plot data and landbase areas were divided by subunit and used for empirical yield curve development.

Yield curves were fit using the same methods described for base natural stand yield curves (Section 6.2). Model form and coefficients are presented in Table 7-6. Coniferous volume would not converge using data split by location, therefore a single coniferous yield curve was fit using combined data. However, average site index by site type varies between locations (Table 7-7); these values were input into the single equation to create subunit-specific coniferous yield curves.

Table 7-6. Model form and model coefficients, subunit-specific aspen yield curves, FMU	
W13.	

DFMP Yiel	d	Number of	Species	Model		Model Coeffi	cients		_
Stratum	Yield Curve Code	Observations	Туре	Form	\mathbf{a}_{0}	\mathbf{a}_1	b	k	\mathbf{R}^2
AW	W13_AW_G_N_MC/VH	94	Coniferous	2P+k	-2.33681E-04	1.08647E-04	2.72026827	50	0.07
			Deciduous	2P+k	-5.76483E-04	4.55778E-05	3.75686635	30	0.48
	W13_AW_F_N_W/BR	44	Coniferous	2P+k	-2.33681E-04	1.08647E-04	2.72026827	50	0.07
			Deciduous	2P+k	5.98792E-03	1.63589E-04	2.81140685	30	0.14
Total		138							

Table 7-7. Average site index values used as inputs to the site-specific empirical yield curve model, subunit-specific aspen curves, FMU W13.

	Site	Site Inc	lex (m)
Subunit	Туре	Coniferous	Deciduous
Whitecourt/	Fair	12.4	15.1
Blue Ridge	Mediun	14.2	17.4
	Good	16.2	19.8
McLeod/	Fair	12.4	14.7
Virginia Hills	Mediun	14.7	17.5
	Good	17.3	20.5

Yield curves developed for the Whitecourt/Blue Ridge subunits were appreciably lower than yield curves developed for the McLeod/Virginia Hills subunits, which parallels expectations based on knowledge of these areas. Differences in site productivity are also evident in TPR assignments by subunit. The total area of natural stands by subunit is summarized in Table 6-8, page 58. The majority of stands have a medium TPR; however, the Whitecourt/Blue Ridge subunit has appreciably less area with a good TPR.

Results are presented in Appendix XVIII.

8. Yield Curves for Timber Supply Analysis

This document has outlined the development of a number of yield curves. Not all yield curves were selected for use in timber supply analysis. The following sections list the curves used in timber supply analysis.

8.1 FMU W11

One natural stand yield curve was fit for each DFMP yield stratum in FMU W11. These yield curves will be used to represent natural stands in timber supply analysis.

Managed stand yield curves were only developed for the APAS_ABCD and PASA_ABCD DFMP yield strata, since there were already "fully stocked" base natural yield curves for aspen, pine and white spruce base natural yield curves (AW_CD, PL_CD, SW_CD) that could be used to represent managed stands.

The yield curves that will be used to represent each stand type in FMU W11 are listed by DFMP yield stratum in Table 8-1. Note that the AW_AB, PL_AB and SW_AB yield strata are not represented under the managed stand type. It is assumed that all regenerating conifer stands will be fully stocked, as required under Alberta regeneration surveys.

FMU W11 yield curves developed for the 2007-2016 DFMP yield strata are graphically presented by DFMP yield stratum in Appendix XIX, for ease of comparison.

Table 8-1. Yield curves used in timber supply analysis, FMU W11, by stand type andDFMP yield stratum.

Stand	DFMP Yield		
Туре	Stratum	Yield Curve Code	Curve Type
Natural	AW_AB	W11_AW_AB_N	Base natural
	AW_CD	W11_AW_CD_N	Base natural
	APAS_ABCD	W11_APAS_ABCD_N	Base natural
	PASA_ABCD	W11_PASA_ABCD_N	Base natural
	PL_AB	W11_PL_AB_N	Base natural
	PL_CD	W11_PL_CD_N	Base natural
	SW_AB	W11_SW_AB_N	Base natural
	SW_CD	W11_SW_CD_N	Base natural
Managed	AW_CD	W11_AW_CD_N	Base natural, fully stocked
	APAS_ABCD	W11_APAS_CD_M	Base managed, fully stocked
	PASA_ABCD	W11_PASA_CD_M	Base managed, fully stocked
	PL_AB	-	-
	PL_CD	W11_PL_CD_N	Base natural, fully stocked
	SW_AB	-	-
	SW_CD	W11_SW_CD_N	Base natural, fully stocked

8.2 FMU W13

In FMU W13, base natural and base managed stand yield curves were developed for each DFMP yield stratum by site type. In order to account for specific silvicultural and management treatments as well as areas with unique growth traits, modified yield curves were developed.

The yield curves used to represent each stand type in FMU W13 are listed by DFMP yield stratum in Table 8-2. Natural stands are represented by base natural stand yield curves except for the AW DFMP yield stratum, where subunit-specific aspen yield curves are used. Managed stands are represented by fully stocked base managed stand yield curves, with the following exceptions:

- 1. Base managed stand yield curves for AW were replaced by subunit-specific aspen yield curves (natural stands, all density);
- 2. Base managed stand yield curves for PL were replaced by site index increase yield curves;
- 3. Base managed stand yield curves for SA were replaced by base natural stand yield curves due to poor curve performance of managed curves (MAI achieved too quickly); and
- 4. In the remaining base managed stand yield curves, where the base natural stand yield curve was higher than the base managed stand curve at operable ages, the base natural curve was used. The base natural curve for good site types replaced the base managed stand curve in the AP, AS, PA and SW DFMP yield strata. All three site-specific base managed curves for were replaced by base natural curves in the SB DFMP yield stratum.

Other stand types (thinning and Athabasca Flats) are represented by their respective base/modified yield curves with no alterations or substitutions.

All FMU W13 yield curves developed for the 2007-2016 DFMP yield strata are presented graphically by DFMP yield stratum in Appendix XIX, for ease of comparison.

Table 8-2. Yield curves used in timber supply analysis, FMU W13, by stand type and DFMP yield stratum.

Stand	DFMP Yiel	d	Site		
Туре	Stratum	Subunit	Туре	Yield Curve Code	Curve Type
Natural	AW	W/BR	Fair	W13_AW_F_N_W/BR	Subunit-specific aspen, all densities
			Medium	W13_AW_M_N_W/BR	Subunit-specific aspen, all densities
			Good	W13_AW_G_N_W/BR	Subunit-specific aspen, all densities
		MC/VH	Fair	W13_AW_F_N_MC/VH	Subunit-specific aspen, all densities
			Medium	W13_AW_M_N_MC/VH	Subunit-specific aspen, all densities
			Good	W13 AW G N MC/VH	Subunit-specific aspen, all densities
	BW		All	W11W13_BW_N ¹	Base natural, all densities
	AP		Fair	W13_AP_F_N	Base natural, all densities
			Medium	W13_AP_M_N	Base natural, all densities
			Good	W13_AP_G_N	Base natural, all densities
	AS		Fair	W13_AS_F_N	Base natural, all densities
			Medium	W13_AS_M_N	Base natural, all densities
			Good	W13_AS_G_N	Base natural, all densities
	PA		Fair	W13_PA_F_N	Base natural, all densities
			Medium	W13_PA_M_N	Base natural, all densities
			Good	W13_PA_G_N	Base natural, all densities
	SA		Fair	W13_SA_F_N	Base natural, all densities
			Medium	W13_SA_M_N	Base natural, all densities
			Good	W13_SA_G_N	Base natural, all densities
	PL		Fair	W13_PL_F_N	Base natural, all densities
			Medium	W13_PL_M_N	Base natural, all densities
			Good	W13_PL_G_N	Base natural, all densities
	SB		Fair	W13_SB_F_N	Base natural, all densities
			Medium	W13_SB_M_N	Base natural, all densities
			Good	W13_SB_G_N	Base natural, all densities
	SW		Fair	W13_SW_F_N	Base natural, all densities
			Medium	W13_SW_M_N	Base natural, all densities
			Good	W13_SW_G_N	Base natural, all densities
Managed	AW	W/BR	Fair	W13_AW_F_N_W/BR	Subunit-specific aspen, all densities
			Medium	W13_AW_M_N_W/BR	Subunit-specific aspen, all densities
			Good	W13_AW_G_N_W/BR	Subunit-specific aspen, all densities
		MC/VH	Fair	W13_AW_F_N_MC/VH	Subunit-specific aspen, all densities
			Medium	W13_AW_M_N_MC/VH	Subunit-specific aspen, all densities
			Good	W13_AW_G_N_MC/VH	Subunit-specific aspen, all densities
	BW		All	W11W13_BW_N ¹	Base natural, all densities
	AP		Fair	W13_AP_F_M	Base managed, fully stocked
			Medium	W13_AP_M_M	Base managed, fully stocked
			Good	W13_AP_G_N	Base natural, all densities
	AS		Fair	W13_AS_F_M	Base managed, fully stocked
			Medium	W13_AS_M_M	Base managed, fully stocked
			Good	W13_AS_G_N	Base natural, all densities
	PA		Fair	W13_PA_F_M	Base managed, fully stocked
			Medium	W13_PA_M_M	Base managed, fully stocked
			Good	W13 PA G N	Base natural, all densities

Table 8-2 Cont'd. Yield curves used in timber supply analysis, FMU W13, by stand type and DFMP yield stratum.

Stand	DFMP Yield		Site		
Туре	Stratum	Subunit	Туре	Yield Curve Code	Curve Type
Managed	SA		Fair	W13_SA_F_N	Base natural, all densities
-			Medium	W13_SA_M_N	Base natural, all densities
			Good	W13_SA_G_N	Base natural, all densities
	PL		Fair	W13_PL_F_SI ²	Site index increase
			Medium	$W13_PL_M_SI^2$	Site index increase
			Good	W13_PL_G_SI ²	Site index increase
	SB		Fair	W13_SB_F_N	Base natural, all densities
			Medium	W13_SB_M_N	Base natural, all densities
			Good	W13_SB_G_N	Base natural, all densities
	SW		Fair	W13_SW_F_M	Base managed, fully stocked
			Medium	W13_SW_M_M	Base managed, fully stocked
			Good	W13_SW_G_N	Base natural, all densities
Commercial	PL		Fair	W13_PL_F_CT	Commercial thinning
Thinning			Medium	W13_PL_M_CT	Commercial thinning
			Good	W13_PL_G_CT	Commercial thinning
	SB		Fair	W13_SB_F_CT	Commercial thinning
			Medium	W13_SB_M_CT	Commercial thinning
			Good	W13_SB_G_CT	Commercial thinning
Salvage	PL		Fair	W13_PL_F_ST	Salvage thinning
Thinning			Medium	W13_PL_M_ST	Salvage thinning
			Good	W13_PL_G_ST	Salvage thinning
	SB		Fair	W13_SB_F_ST	Salvage thinning
			Medium	W13_SB_M_ST	Salvage thinning
			Good	W13_SB_G_ST	Salvage thinning
Athabasca Flats Pre-Treat	COMPOSITE		All	W13_ALL_AF_Pre	Athabasca Flats pre-treatment
Athabasca Flats Post-Treat	COMPOSITE		All	W13_ALL_AF_Post	Athabasca Flats post-treatment

¹ FMU-wide yield curve.

² Pine SI increase applied to natural stand curves.

9. Additional Growth and Yield Issues

Although this document's primary purpose is to describe the development of volume-age yield curves for the 2007-2016 DFMP, there are a number of related growth and yield issues that are also included herein. These are: cull, piece size curves, species composition curves and regeneration lag calculations.

9.1 Cull Deductions

Cull deductions are applied to yield curves to reflect losses to cull (trees or portions thereof that are merchantable but are removed because of defect). In the 1997-2006 DFMP, an 8% deciduous cull and a 2% coniferous cull were applied after timber supply analysis. An annual allowable cut (AAC) was determined for *gross volume*, and cull factors were applied to obtain the net AAC.

The new Alberta Forest Management Planning Standard (SRD 2006) requires that cull be applied as a percent reduction to yield curves, rather than as a reduction to the harvest level in timber supply analysis.

Updated cull factors are required for the 2007-2016 DFMP. This section describes the methods by which cull was derived.

9.1.1 Methods

Scaling data (number of logs, gross scaled volume, cull volume, and *net* volume) were used to determine cull. Millar Western cull data for the 2003 and 2004 timber years were used for analysis. Data were from both FMU W11 and FMU W13.

Coniferous scaling data were available from 64 cutblocks (186 species-specific records), and deciduous scaling data were available from 72 cutblocks (128 species-specific records). The number of blocks and records is broken down by FMU in Table 9-1.

Table 9-1. Number of cull records and associated number of cutblocks by species groupand FMU.

Species		Number	Number
Туре	FMU	of Records	of Blocks
Deciduous	W11	112	64
	W13	16	8
Coniferous	W11	0	0
	W13	186	64

For each species type, cull was determined by calculating percent cull for each record. Each record was then weighted by gross scaled volume, so that records representing more scaled volume had a higher influence on the cull calculation. All records were then summed to obtain percent cull for the species group. The equation was:

$$PctCull = \sum_{i=1}^{n} \left(\left(\frac{CullVol_{i}}{GrossVol_{i}} \right) * \left(\frac{GrossVol_{i}}{GrossVol_{tot}} \right) \right) * 100$$

which reduces to
$$PctCull = \frac{\sum_{i=1}^{n} CullVol_{i}}{GrossVol_{tot}} * 100$$

Where: *PctCull* = percent cull

 $CullVol = cull volume (m^3)$

GrossVol = gross scaled volume (m³)

9.1.2 Results

Results of calculations are presented in Table 9-2.

Table 9-2. Millar Western percent cull by species type, combined FMUs, for use in the 2007-2016 DFMP.

Species	Percent
Туре	Cull
Deciduous	5.2
Coniferous	2.2

No Millar Western coniferous cull data were available from FMU W11, but information from SRD indicates that percentages are similar to those calculated using SRD data (Table 9-3) (Bill Cooper, SRD, via email). This information also provides independent verification that the proposed values for cull are reasonable.

Table 9-3. SRD percent cull by species type, FMU W11, for comparison purposes.

Species	Percent
Туре	Cull
Deciduous	5.3
Coniferous	2.0

Millar Western's cull calculation was used for both FMUs. A 5.2 percent reduction was applied to the deciduous component of each yield curve, and a 2.2 percent reduction was applied to the coniferous component of each yield curve. However, cull was applied to yield curves during timber supply modelling and therefore net merchantable volume yield curves are not presented here.

9.2 Piece Size Curves

Piece size curves were required to provide an estimate of how piece size (number of trees per cubic meter of gross merchantable tree volume) changes over time. This information is used in timber supply modelling to assess the economics of stands selected for harvest.

9.2.1 Methods

Piece size curves were developed for both FMU W11 and FMU W13. The same method was used for both FMUs.

The base TSP/PSP dataset used in yield curve development was used for piece size curve development. Influential points that were removed from the dataset during yield curve development were included in piece size development. Plot attributes were the same as previously defined, and volumes compiled for yield curve development were retained for use in this analysis.

For each plot, trees per m³ was calculated, by dividing total number of merchantable trees in the plot by the gross merchantable plot volume. An equation to predict trees per m³ as a function of age was then fit directly using plot data:

$$PieceSize = a_0 + \frac{a_1}{Age}$$

Where[.]

PieceSize = number of trees per m^3 of gross merchantable tree volume

Age = age at year of measurement

$$a_0, a_1 = \text{coefficients}$$

Observations with no merchantable volume were excluded from analysis, since piece size could not be calculated (dividing by zero). Several influential points were also removed. These were extreme values that affected curve fit. The final number of observations by DFMP yield stratum

was different for coniferous and deciduous curves, since there could be coniferous volume with no deciduous volume, or vice versa. The number of observations used in developing piece size curves is summarized in Table 9-4.

			C	oniferous Curv	/es	E	Oeciduous Curv	ves
		Initial		Observations	Final		Observations	Final
	DFMP Yield	Number of	Influential	With Zero	Number of	Influential	With Zero	Number of
FMU	Stratum	Observations	Points	Volumes	Observations	Points	Volumes	Observations
W11	AW_AB	63	3	49	11	3	17	43
	AW_CD	105		71	34		26	79
	APAS_ABCD	72		22	50		25	47
	PASA_ABCD	80		17	63		29	51
	PL_AB	71		20	51	4	59	8
	PL_CD	66		14	52		47	19
	SW_AB	59		19	40		36	23
	SW_CD	63		8	55		31	32
	Total	579	3	220	356	7	270	302
W13	AW	138		60	78		17	121
	BW	42		21	21		12	30
	AP	58		6	52		8	50
	AS	96		26	70		22	74
	PA	64		11	53		27	37
	SA	64		9	55		19	45
	PL	183		29	154		132	51
	SB	61		14	47		57	4
	SW	76		13	63		43	33
	Total	782		189	593		337	445
Grand T	`otal	1,361	3	409	949	7	607	747

9.2.2 Results

Model coefficients are presented in Table 9-5. Graphs showing piece size curves are provided in Appendix XX.

Certain piece size curves show poor performance, with values of zero before death age. For TSA purposes, piece size values greater than zero were required at older ages for proper model function. Therefore, a minimum piece size value was applied. Any curves that fell below the 10th percentile of the plot data used for curve development were capped at that minimum value. This minimum was applied during timber supply modelling and therefore the adjusted curves are not presented here.

	DFMP Yield	Species	Model (Coefficients
FMU	Stratum	Туре	\mathbf{a}_0	a ₁
11	AW_AB	Coniferous	4.68291	83.96982
		Deciduous	-2.74769	522.82353
	AW_CD	Coniferous	4.00407	96.13856
		Deciduous	-0.55139	368.80043
	APAS_ABCD	Coniferous	0.61400	401.05774
		Deciduous	0.58903	344.69404
	PASA_ABCD	Coniferous	1.34493	186.47765
	_	Deciduous	-1.44842	479.46998
	PL_AB	Coniferous	3.63011	136.82045
	—	Deciduous	2.68631	117.32448
	PL_CD	Coniferous	-3.05070	822.00923
	_	Deciduous	-1.20960	518.41124
	SW_AB	Coniferous	5.16384	26.60796
	_	Deciduous	2.85493	287.66632
	SW_CD	Coniferous	1.31412	238.69963
		Deciduous	-1.26312	489.92987
V13	AW	Coniferous	3.35441	138.89566
		Deciduous	-0.89112	347.75294
	BW	Coniferous	0.73968	373.89008
		Deciduous	-0.30692	456.63616
	AP	Coniferous	-1.41872	434.09965
		Deciduous	-4.70026	694.47459
	AS	Coniferous	-0.19330	284.65316
		Deciduous	0.11112	273.06719
	PA	Coniferous	-0.86782	370.85279
		Deciduous	-1.46693	532.22920
	SA	Coniferous	0.58922	291.04339
		Deciduous	3.24711	78.79453
	PL	Coniferous	-1.60400	545.02440
		Deciduous	-1.73117	559.64027
	SB	Coniferous	6.03084	102.60456
		Deciduous	-2.65923	737.88434
	SW	Coniferous	1.47080	134.58594
		Deciduous	1.24279	239.91475

Table 9-5. Model coefficients for piece size curves, FMU W11 and FMU W13.

9.3 Species Composition Curves

Species composition by DFMP yield stratum was required so that volume harvested by species could be tracked within timber supply analysis.

9.3.1 Methods

Plot data were divided into age classes (using the defining layer stand age) by species type and species group (Table 9-6). 40-year age classes were used for both coniferous and deciduous species types, however, the coniferous age classes began and ended 20 years later to reflect the fact that coniferous species generally achieve merchantable volumes later than deciduous species.

Species		Age	Age
Туре	Species Group	Class	Range
Deciduous	AW, BW, PB	20	<40
	_	60	40-79
	-	100	80-119
		140	120+
Coniferous	FB, FD, LT, PL, SB, SW	40	<60
	_	80	60-99
		120	100-139
	_	160	140+

 Table 9-6. Age classes for percent species composition calculations by species type.

For each observation, gross merchantable volume was summed by species. Mean gross merchantable volume was then calculated by species and in total within DFMP yield stratum and age class. Percent volume by species was calculated as:

$$%Vol_{SPi} = \frac{AvgVol_{SPi}}{AvgVol_{TOT}} * 100$$

Where:

%Vol_{SPi} = percent volume, species i

AvgVol_{SPi} = average gross merchantable volume, species i

 $AvgVol_{TOT}$ = average gross merchantable volume, for the species type

Total percent volume by species group was calculated for deciduous and coniferous species groups, respectively, using:

$$%Vol_{DEC} = \sum (%Vol_{AW} + %Vol_{BW} + %Vol_{PB})$$

$$%Vol_{CON} = \sum (%Vol_{FB} + %Vol_{FD} + %Vol_{LT} + %Vol_{PL} + %Vol_{SB} + %Vol_{SW})$$

Where:

%*Vol_{DEC}* = percent deciduous volume

%*Vol_{CON}* = percent coniferous volume

%*Vol*_{AW,BW,PB,FB,FD,LT,PL,SB,SW} = percent volume by species (%*Vol*_{SPi})

9.3.2 Results

Results of analyses for FMUs W11 and W13, respectively, are presented in Table 9-7 and Table 9-8. Note that total coniferous volume does not add together with total deciduous volume to 100%, since percent deciduous and percent coniferous volume were calculated using different age classes. Within timber supply analysis, deciduous percent volume was normalized to total to 100% at each age class. The deciduous portion of each yield curve was separated into AW, BW, and PB components using the proportion at each age class, and straight-line interpolation

between age classes. The same process was applied to coniferous percent volume. These results were applied to generate species-specific volumes within timber supply analysis.

Table 9-7.	Percent species	composition	bv	DFMP	vield stratum	n and age cl	ass, FMU W11.
	· · · · · · · · · · · · · · · · · · ·	L					

DFMP Yield	Age	Deci	duous P	ercent V	Volume		Con	iferous F	Percent V	Volume	
Stratum	Class	AW	BW	PB	Total	FB/FD	LT	PL	SB	SW	Total
AW_AB	60	61.1	4.1	31.5	96.7						
	80					0.4	0.0	0.0	2.2	3.7	6.3
	100	54.8	0.0	38.2	93.1						
	120					0.0	0.0	2.3	0.6	12.3	15.1
	140	63.9	7.1	3.6	74.6						
	160					-	-	-	-	-	-
AW_CD	60	61.2	9.7	14.0	84.8						
	80					0.0	0.0	1.1	0.7	13.5	15.3
	100	68.2	1.6	6.1	75.9						
	120					0.1	0.0	4.0	0.1	21.8	26.0
	140	72.5	0.2	10.4	83.1						
	160					-	-	-	-	-	-
APAS_ABCD	60	15.4	17.8	16.3	49.5						
	80					0.0	1.1	9.8	6.1	12.1	29.2
	100	60.2	0.0	7.7	67.9						
	120					0.1	0.4	4.9	6.3	29.2	40.9
	140	36.6	0.1	12.2	48.8	0.0	0.0		0.0	50.4	55.0
	160	20.2	()	2.7	40.2	0.0	0.0	5.5	0.0	50.4	55.9
PASA_ABCD	60	39.3	6.2	3.7	49.2	0.0	1.4	12.0	7.0	20.4	51.5
	80	26.0	0.2	2.0	40.1	0.0	1.4	12.8	7.0	30.4	51.5
	100	36.9	0.3	2.9	40.1	0.1	0.0	7.2	2.0	12.0	54.2
	120 140	42.0	2.7	9.8	54.6	0.1	0.0	7.3	3.0	43.8	54.2
	140	42.0	2.1	9.8	54.0	-	-	_	-	-	-
PL AB	60	17.3	0.0	5.1	22.4	-	-	-	-		
	80	17.5	0.0	5.1	22.7	0.0	0.0	70.8	2.2	6.6	79.6
	100	4.0	0.4	0.2	4.6	0.0	0.0	70.0	2.2	0.0	17.0
	120		0	0.2		0.0	0.2	36.2	21.7	35.6	93.7
	140	7.7	0.2	0.0	7.9		•				
	160					-	-	-	-	-	-
PL_CD	60	10.3	0.0	3.2	13.4						
—	80					0.0	0.0	78.2	9.6	1.2	89.1
	100	12.6	0.0	1.2	13.8						
	120					0.1	0.8	58.9	14.2	8.3	82.2
	140	23.9	0.1	0.0	24.0						
	160					0.0	0.0	47.4	9.6	0.0	57.0
SW_AB	60	15.5	0.8	4.8	21.1						
	80					0.0	0.0	2.0	20.8	68.9	91.7
	100	9.7	0.5	9.6	19.8						
	120					0.4	1.5	15.6	19.8	34.1	71.5
	140	23.1	2.3	4.6	30.0						
	160					-	-	-	-	-	-
SW_CD	60	10.0	1.5	7.9	19.4		• •				
	80				4.5.2	0.0	3.0	7.2	22.9	50.1	83.1
	100	11.8	0.8	3.0	15.6		0.0			- 1 -	(
	120	27.2	0.0	11.0	46.4	0.9	0.0	4.0	5.4	54.6	65.0
	140	37.3	0.9	11.2	49.4						
	160					-	-	-	-	-	-

DFMP Yield Stratum AW	Class 60 80 100	AW 56.7	BW 5.7	ercent V PB	Total	FB/FD	LT	ferous P PL	SB	SW	Total
AW	80 100	56.7	5.7						~-	0.11	Total
-	100			22.2	84.6						
-						0.6	0.0	3.3	0.1	13.1	17.2
-		54.3	1.1	23.5	78.9						
_	120					0.3	0.0	0.0	0.0	18.8	19.1
	140	48.5	1.9	48.3	98.6						
	160					-	-	-	-	-	-
AP	60	33.1	1.7	3.0	37.8						
_	80					0.0	0.0	15.5	4.4	15.4	35.3
_	100	59.3	1.7	4.4	65.4						
_	120					2.9	0.0	15.4	5.2	18.1	41.5
_	140	54.4	0.1	3.5	58.1						
	160					-	-	-	-	-	-
AS	60	38.1	2.0	12.7	52.8						
_	80					0.0	0.0	28.6	3.0	16.1	47.7
-	100	35.0	4.1	11.7	50.8						
-	120					1.1	0.0	6.7	1.2	32.2	41.2
-	140	33.1	0.6	36.7	70.4						
	160					-	-	-	-	-	-
PA	60	22.2	3.3	0.6	26.1						
_	80					0.0	0.0	60.2	6.1	12.9	79.2
_	100	30.2	1.6	0.0	31.8						
_	120					0.4	0.0	46.5	2.9	15.8	65.6
_	140	18.8	0.7	5.2	24.8						
	160					0.8	0.0	37.8	7.2	34.6	80.3
SA	60	33.5	0.0	2.7	36.2						
_	80					4.2	0.0	0.0	0.0	59.2	63.4
_	100	18.4	2.7	13.1	34.2						
_	120					2.6	0.0	8.1	2.0	44.3	57.0
_	140	29.8	4.5	12.2	46.4						
	160					-	-	-	-	-	-
PL _	60	6.5	1.2	1.8	9.6						
_	80					0.4	0.0	72.8	6.3	7.6	87.1
_	100	13.8	2.0	0.8	16.6						
_	120					1.6	0.0	53.9	11.0	15.1	81.6
_	140	10.7	0.3	0.0	11.0						
	160					3.1	0.0	34.9	11.7	45.3	95.0
SB	60	1.4	0.1	0.0	1.5						
_	80					0.0	0.0	40.9	59.1	0.0	100.0
_	100	0.0	0.0	0.0	0.0						
_	120					3.5	0.9	10.9	63.3	18.5	97.1
_	140	3.2	0.0	0.0	3.2						
	160					3.2	3.3	29.3	64.2	0.0	100.0
SW	60	13.4	1.3	1.2	16.0						
_	80					0.5	0.0	39.8	5.1	34.4	79.8
_	100	14.6	1.7	15.4	31.7						
_	120					2.8	0.3	8.1	11.1	57.9	80.1
_	140	0.7	1.0	10.0	11.7						
	160					1.1	0.0	0.0	25.5	73.5	100.0

Table 9-8. Percent species composition by DFMP yield stratum and age class, FMU W13.

9.4 Regeneration Lag

Regeneration lag (regen lag) is the time in years following harvesting that is required for the harvested area to become stocked with desirable tree species. Regeneration lag calculations employ historic data to project anticipated regeneration lag in forecasting.

Regeneration lag calculations were required for Millar Western's FMA area for the 2007-2016 DFMP. They have been completed in accordance with the Alberta Forest Management Planning Standard Version 3 – June 2005 and additional instructions provided by SRD (Regeneration Lag Assessment Version 8.0 (SRD 2005), received from Stephen Wills, April 28, 2006).

Regeneration lag was calculated separately for each FMU according to one of two broad cover group classes (pure conifer and mixedwoods grouped together, and pure deciduous). Regeneration lag was applied as a shift to all yield curves representing managed stands used in the Millar Western 2007-2016 DFMP during timber supply modelling (see Chapter 8).

9.4.1 Methods

Regeneration lag was determined in two stages: first, a regeneration lag was assigned to each existing cutblock using the rules provided by SRD, and then an area-weighted regeneration lag was calculated for each FMU and broad cover group class. Four area-weighted regeneration lags were calculated for the 2007-2016 DFMP:

- D broad cover groups in FMU W11;
- C, CD and DC broad cover groups in FMU W11;
- D broad cover groups in FMU W13; and
- C, CD and DC broad cover groups in FMU W13.

Millar Western's geodatabase system, which was used to develop the cutblock dataset for the landbase classification, contained all the information required for the regeneration lag calculations. The development of the cutblock dataset is described in Millar Western's *Cutblock Classification* (Millar Western 2006a). The relevant information for the regeneration lag calculations from this dataset included:

- Post-harvest broad cover group declaration;
- Status of regeneration surveys (completed or not completed);
- Result of the survey;
- Year of harvest (calculated using timber year (defined in the Alberta Forest Management Planning Standard as May 1 to April 30) of skid clearance date);

- Harvest type (clearcut or thinning);
- Silviculture activities (calculated as the dominant treatment occurring within 2 years of skid clearance date that was applied to at least 60% of the cutblock area; treatments in order of decreasing dominance were: planting, seeding including drag scarification for pine, site preparation, and lastly leave-for-natural);
- Last treatment date (calculated as the year, from July 1 to June 30, of the most recent silvicultural activity that was applied to at least 20% of the cutblock area; tending was not considered a silvicultural activity for this analysis);
- Planting stock; and
- Cutblock area.

Assigning Regeneration Lag to Cutblocks

First, the cutblocks that were used in the regeneration lag calculations were selected from the cutblock dataset. The selected cutblocks met the following criteria:

- Clearcut harvest (not thinned or selectively logged);
- Harvested on or after March 1, 1991;
- Harvested before May 1, 1997 for C, CD and DC broad cover groups;
- Harvested before May 1, 2000 for D broad cover groups; and
- Not an existing cutblock in the Virginia Hills area that was burnt in the 1998 fire where Millar Western committed to reforesting and accepted regeneration liability.

Based on SRD's rules, cutblocks harvested before May 1, 1996 (C, CD and DC broad cover groups) and May 1, 1999 (D broad cover groups) were to be included in the regeneration lag calculation. Additional years could also be included if all blocks within that year had been declared SR or NSR. For these calculations, one additional year met this criterion and was included for both the C, CD, and DC broad cover groups and the D broad cover group.

Status and management strategy were then assigned to all cutblocks using the hierarchy in Table 9-9.

Table 9-9. Hierarchy and criteria for assigning regeneration status and management strategy.

	Management	
Status	Strategy	Assignment Criteria
SR	Plant or Seed	Regeneration survey completed, result was SR, planting or
		seeding activities ¹ occurred within 2 years of harvest
SR	Site Preparation	Regeneration survey completed, result was SR, site preparation
		activities occurred within 2 years of harvest
SR	LFN	Regeneration survey completed, result was SR, and LFN
		strategy was identified
CSR	-	Regeneration survey completed, result was CSR
NSR	-	Regeneration survey completed, result was NSR
Overdue	-	No regeneration survey completed

¹Activities must cover 60% or more of the cutblock area.

Once status and management strategy was assigned, the regeneration lag was calculated for each cutblock using the rules provided in Table 9-10.

Broad			Management Strategy		
Cover	SR	SR	SR		
Group	Plant or Seed	Site Preparation	LFN	CSR	Overdue or NSR ¹
С			Maximum of:		Maximum of:
			5 years		10 years
			or		or
	If planting stock		last treatment date minus year of harvest		2004 minus year of harvest
CD	was 2+0, then		Maximum of:		Maximum of:
	last treatment		4 years		10 years
	date minus year	Last treatment	or		or
	of harvest minus	date minus year of	last treatment date minus year of harvest		2004 minus year of harvest
DC	1 year,	harvest plus 2	Maximum of:		Maximum of:
	otherwise last	years	2 years		10 years
	treatment date		or		or
	minus year of		last treatment date minus year of harvest		2004 minus year of harvest
D	harvest		Maximum of:	3 years	Maximum of:
			1 year		7 years
			or		or
			last treatment date minus year of harvest		2004 minus year of harvest

¹The regeneration lag assessment year was the same as the effective date of the landbase classification (2004).

Calculating an Area-Weighted Regeneration Lag

The regeneration lag assigned to each cutblock was averaged for FMU and broad cover group class using cutblock areas.

9.4.2 Results

The area-weighted regeneration lag was calculated, and then rounded up to the nearest year, which was used in timber supply modelling (Table 9-11).

	Broad	Non-Rounded	Rounded
	Cover	Regeneration Lag	Regeneration Lag
FMU	Group	(years)	(years)
W11	C, CD, DC	5.6698	6
	D	2.2435	3
W13	C, CD, DC	3.9320	4
	D	2.8742	3

The number and area of cutblocks by management strategy and broad cover group is presented in Table 9-12 and Table 9-13 for each FMU respectively.

Table 9-12. Number and area (ha) of cutblocks by management strategy and broad cover group, FMU W11.

Broad _		Numb	er of Bloc	ks by Managem	ent Strategy			
Cover		SR						
Group H	Plant or Seed	Site Preparation	LFN	Unspecified ¹	CSR	NSR	Overdue	Total
Number	of Blocks							
С	11	12	2	56		4	1	86
CD	6	13	-	36		2	-	57
DC	2	6	-	24		4	-	36
D	2	1	63	20	-	2	1	89
Total	21	32	65	136	0	12	2	268
Area (ha	a) of Blocks							
С	118	151	25	721		29	14	1,058
CD	109	219	-	739		28	-	1,095
DC	32	96	-	457		84	-	669
D	39	20	1,638	437	-	14	28	2,177
Total	298	487	1,663	2,355	0	156	42	5,000

¹ Treated as "SR-LFN" management strategy for classification.

Table 9-13. Number and area (ha) of cutblocks by management strategy and broad cover group, FMU W13.

Broad		Numb	er of Bloc	ks by Managem	ent Strategy			_
Cover		SR						_
Group	Plant or Seed	Site Preparation	LFN	Unspecified ¹	CSR	NSR	Overdue	Total
Number	r of Blocks							
С	182	66	1	86		23	2	360
CD	5	2	-	1		-	-	8
DC	1	1	-	-		1	-	3
D	-	2	130	2	56	8	2	200
Total	188	71	131	89	56	32	4	571
Area (h	a) of Blocks							
С	4,020	1,726	15	2,059		548	30	8,398
CD	107	41	-	7		-	-	155
DC	11	33	-	-		15	-	58
D	-	16	2,666	26	1,067	144	534	4,454
Total	4,138	1,816	2,681	2,092	1,067	707	565	13,065

¹ Treated as "SR-LFN" management strategy for classification.

The minimum acceptable standards for regeneration have evolved over time, from simply ensuring that a new stand has been established to ensuring that new stands meet minimum performance standards. This has increased silvicultural intensity requirements (planting of larger stock, herbicide treatments, *etc.*). As a result, regeneration lag has steadily decreased since 1991.

However, SRD guidelines require that all cutblocks harvested after March 1, 1991 be included in regeneration lag calculations. Figure 9-1 and Figure 9-2 present the regeneration lag by year of harvest and management strategy for the C, CD and DC broad cover groups and D broad cover group, respectively.

The regen lag calculation was applied to all managed stand yield curves used in the Millar Western 2007-2016 DFMP. Regeneration lag was applied during timber supply analysis, therefore lagged curves are not presented here.

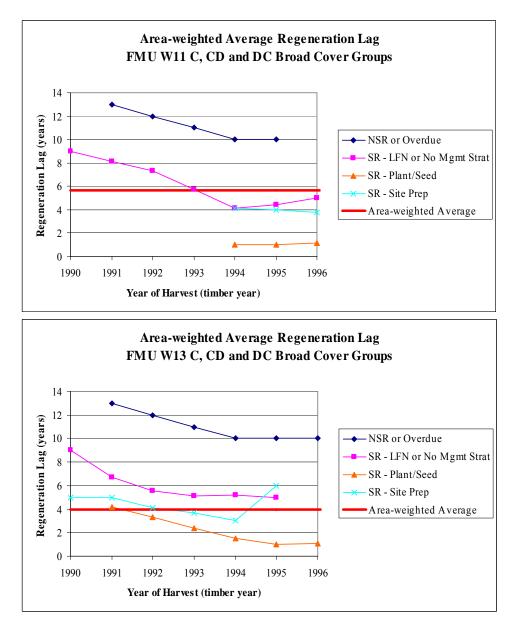


Figure 9-1. Regeneration lag by management strategy and year of harvest for the conifer and mixedwood (C, CD, and DC) broad cover groups.

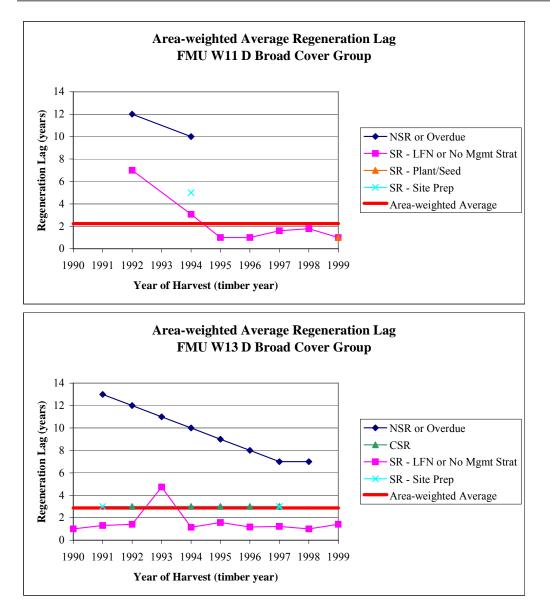


Figure 9-2. Regeneration lag by management strategy and year of harvest for the deciduous (D) broad cover group.

10. References

- Alberta Forestry, Lands and Wildlife. 1991. Alberta Vegetation Inventory Standards Manual Version 2.1. Land Information Services Division, Resource Information Branch. Edmonton, AB.
- Alberta Sustainable Resources Development. 1999. Temporary Sample Plot Program: Request for Proposals. Edmonton, AB.
- Alberta Sustainable Resources Development. 2003. Alberta Regeneration Survey Manual. Edmonton, AB.
- Alberta Sustainable Resources Development. 2005 Regeneration Lag Assessment Version 8. Edmonton, AB.
- Alberta Sustainable Resources Development. 2006. Alberta Forest Management Planning Standard Version 4.1. Edmonton, AB.
- Dempster, W.R. 2004. Comparison Of Pre-Harvest And Post-Harvest Site Indices. Foothills Growth And Yield Association Regenerated Lodgepole Pine Project. Hinton, Alberta. http://www.fmf.ca/publications.html#GrowthAndYield
- Huang, S. 1994a. Ecologically-Based Individual Tree Height-Diameter Models For Major Alberta Tree Species. Report #2. Alberta Environmental Protection, Land and Forest Services. Forest Management Division. Publication T/291. Edmonton, AB.
- Huang, S. 1994b. Ecologically-Based Individual Tree Volume Estimation For Major Alberta Tree Species: Methods Of Formulation And Statistical Foundations. Report #1. Alberta Environmental Protection, Land and Forest Services. Forest Management Division. Publication T/288. Edmonton, AB.

- Huang, S., R.A. Monserud, T. Braun, H. Lougheed and O. Bakowsky. 2004. Comparing Site Productivity of Mature Fire-Origin and Post-Harvest Juvenile Lodgepole Pine Stands in Alberta. Can. J. For. Res. 34: 1181-1191.
- Husch, B., C. Miller and T. Beers. 1982. Forest Mensuration. John Wiley & Sons, New York.
- Kozak, A. 1988. A Variable-Exponent Taper Equation. Can. J. For. Res. 18: 1363-1368.
- Millar Western Forest Products Ltd. 2000. Detailed Forest Management Plan. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2004a. Athabasca Flats Selective Logging: Sampling Design. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2004b. Permanent Sample Plot Manual. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2004c. Temporary Sample Plot Manual. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2004d. Volume Sampling Program: 2004 Field Season. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2004e. W11 Preliminary Forest Management Plan: TSA Documentation. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2005a. Terms of Reference: 2007-2016 Detailed Forest Management Plan. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2005b. Virginia Hills Fire Survey Manual (Revised March 21, 2005). Whitecourt, AB.
- Millar Western Forest Products Ltd. 2005c. Windfall Burn Sampling Protocols. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2005d. W11 Ecosite Map Development: 2007-2016 Detailed Forest Management Plan. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2006a. In Preparation. Cutblock Classification: 2007-2016 Detailed Forest Management Plan. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2006b. Growth and Yield Plan: 2007-2016 Detailed Forest Management Plan. Whitecourt, AB.
- Millar Western Forest Products Ltd. 2007. In Preparation. Landbase Classification: 2007-2016 Detailed Forest Management Plan. Whitecourt, AB.
- Nigh, G.D. 1995. Site Index Conversion Equations For Mixed Species Stands. BC Ministry of Forests Research Report 01. Victoria, BC.

The Forestry Corp. 1999. Managed Stand Site Index Study: Lodgepole Pine. Prepared for Millar Western Forest Products Ltd. Edmonton, AB.

APPENDICES

Table of Contents

APPENDIX I.	GLOSSARY
APPENDIX II.	STRUCTURE OF TERMINOLOGY
APPENDIX III.	SAMPLING DESIGNS: TSPS
APPENDIX IV.	SAMPLING DESIGNS: SPECIAL AREA TSPS 101
APPENDIX V.	SAMPLING DESIGNS: PSPS 103
APPENDIX VI.	WINDFALL BURN PINE STAND ANALYSIS 107
APPENDIX VII.	SITE INDEX CONVERSION EQUATIONS 111
APPENDIX VIII.	PINE SITE INDEX INCREASE DISCUSSION
APPENDIX IX.	FMU W11 BASE NATURAL STAND YIELD CURVES 117
APPENDIX X.	FMU W11 BASE MANAGED STAND YIELD CURVES 127
APPENDIX XI.	FMU W11 BASE COMPOSITE YIELD CURVES 131
APPENDIX XII.	FMU W13 BASE NATURAL STAND YIELD CURVES 137
APPENDIX XIII.	FMU W13 BASE MANAGED STAND YIELD CURVES 173
APPENDIX XIV.	FMU W13 BASE COMPOSITE YIELD CURVES 207
APPENDIX XV.	FMU W13 PINE SITE INDEX INCREASE YIELD CURVES 213
APPENDIX XVI.	FMU W13 THINNING YIELD CURVES
APPENDIX XVII.	FMU W13 ATHABASCA FLATS YIELD CURVES 233
APPENDIX XVIII.	FMU W13 ASPEN SUBUNIT YIELD CURVES 237
APPENDIX XIX.	YIELD CURVE COMPARISONS
APPENDIX XX.	PIECE SIZE CURVES

List of Tables

Table III-1. Summary of Millar Western TSP programs to date.	
Table VI-1. Number of plots used in GYPSY runs by plot and stand type.	
Table VII-1. Coefficients for site index conversion equations.	
Table VII-2. AW site index conversion table.	
Table VII-3. PL site index conversion table.	
Table VII-4. SB site index conversion table.	
Table VII-5. SW site index conversion table.	114
Table VIII-1. Estimates of managed stand site index for Lodgepole pine based on fire origin si	te index.

List of Figures

Figure VI-1. GYPSY simulations of individual TSP/PSP plots, Windfall (red) vs. non-Windfall (green).
Figure VI-2. GYPSY simulations based on average plot data, Windfall PSP/TSP (red), non-Windfall
PSP/TSP (green), KBM Windfall (blue)110

Appendix I. Glossary

Glossary Term	Definition		
Athabasca Flats	An area along the Athabasca River in Millar Western's FMA that has been managed since 1997 for		
	wildlife habitat and aesthetic values using a horse logging operation.		
Athabasca Flats selective logging yield	Modified composite yield curve developed to represent the small (under 700 ha) area harvested		
curve	using selective thinning. Yield curve has been localized using plot data to represent pre- and post-		
	thinning volumes.		
AVI polygon	A polygon delineated based on aerial photography using Alberta Vegetation Inventory rules		
	(AFLW 1991, Nesby 1996). For vegetated areas, areas must be sufficiently similar in terms of		
	structure, moisture regime, crown closure, height, species composition, and origin year to be		
	considered a single unit, or polygon. For nonvegetated areas, areas must have a similar		
	nonvegetated classification.		
BAP strata	A stratification assigned to all stands in the gross landbase. Based upon extended strata (broad		
	cover group and species composition) for forested stands and AVI or anthropogenic stand		
	disturbances for non-forested stands. BAP strata are independent of FMU.		
Base yield curve	The "standard" set of yield curves developed for the DFMP yield strata, representing the main		
-	stand types within the FMA area. Base yield curves may or may not be used to represent these		
	stand types in the final timber supply analysis.		
Broad cover group	A classification of forest types based on coniferous and deciduous components of the AVI species		
	composition. The broad cover groups are coniferous (C), coniferous-leading mixedwood (CD),		
	deciduous-leading mixedwood (DC) and deciduous (D).		
Clearcut	A regeneration system where all or most of the merchantable trees in a defined area are harvested		
	in one cutting with reproduction obtained through artificial or natural means. [SRD 2006]		
Commercial thinning	A partial cut where trees of a merchantable size and value are removed to provide an interim		
U	harvest while maintaining a high rate of growth on the remaining, well-spaced, final crop trees.		
	Used to capture volume likely to succumb to competition pressures and be lost to disease, insect, or		
	dieback. [SRD 2006]		
Commercial thinning yield curve	A modified yield curve for the PL and SB DFMP yield strata, whereby 35% of the natural stand		
0,5	volume is removed at 45 years. There is an assumption of recovery to 90% of natural stand		
	volumes after 15 years.		
Composite layer	A single AVI attribute string created by merging attributes from both the overstory and understory.		
1 2	Used as the defining layer for certain multi-storied stands.		
Composite yield curve	Area-weighted composite yield curves developed from empirically-fit natural stand yield curves; a		
1 5	single composite curve was developed for each FMU.		
Convergence	Nonlinear regression involves an iterative process in SAS [™] . An initial set of parameters is		
-	provided for the model, and the program attempts to improve the fit of the model to the data by		
	modifying these values. Once the model can no longer be improved by changing these values, the		
	model is said to have achieved convergence. Occasionally, convergence cannot be achieved, often		
	due to the presence of influential points.		
Crop plan	A silvicultural plan designed to assist in growing a forest stand or crop at densities that improve or		
	maximize the quantity or value of the timber produced.		
Crop plan yield curve	Yield curves developed to represent volume over time in stands managed under a specific crop		
	plan. Includes representation of volume removal via thinning.		
Cull	Trees or portions thereof that are merchantable but are removed because of defect.		
Cutblock	A specified area that is either designated for harvest or has already been harvested.		
Defined forest area	A specified area of forest, including land and water (regardless of ownership or tenure) to which		
	the requirements of the Alberta Forest Management Planning Standard apply. The DFA may or		
	may not consist of one or more contiguous blocks or parcels. (The total area of analysis for use in		
	TSA before any deletions are made for parks, landuse, operability, etc.) [CSA, cited in SRD 2006]		
Defining layer	The inventory layer used to assign strata. The defining layer may be the overstory, the understory		
	or a composite of the two (composite layer).		

Glossary Term	Definition
DFMP yield strata	A stratification applied to the forested landscape. Assignment is based upon species strata and/or
-	crown closure class. DFMP Yield strata form the basis for the development of yield curves; each
	DFMP yield stratum has one or more associated yield curves. For example: Aspen open (AW_AB).
Extended strata	One of the three levels of yield stratification rules outlined in the Alberta Forest Management
	Planning Standard, intended to provide a standardized stratification scheme acceptable to Alberta.
	Extended stratification is a detailed level used to address specific local issues. Rolls up into
	Recommended stratification (moderate level of detail) and then to the Minimum stratification
	(basic level of detail). For the Millar Western 2007-2016 DFMP, extended strata are converted to
	DFMP yield strata.
Forested landscape	Areas within the gross landbase currently supporting, or being regenerated to, forested tree species.
Fully stocked	All potential growing space is effectively occupied by merchantable tree species.
Fully stocked method	A method for developing managed stand yield curves. Yield curves are empirically fit using plots
T uny stocked method	from natural stands with a C or D density crown closure class; these curves are used as a proxy to
	represent fully stocked managed stands.
Gross landbase	Entire area in ha within the boundaries of both Millar Western FMUs. Includes areas within the
Gross landbase	outer boundaries of the FMUs that are normally excluded from the FMU area, such as parks.
Gross volume	Indicates that no defect/cull deduction has been applied; this term can be applied to tree-level, plot-
Stoss volume	level or stand-level volumes (e.g., gross total tree volume, gross merchantable tree volume, gross
	total plot volume, gross merchantable plot volume, gross total stand volume, gross merchantable
	stand volume).
Influential point	An extreme data point that negatively influences model performance, resulting in failure to
initiacitiai point	converge or an unacceptable curve shape.
Landbase polygon	A polygon within the (classified, TSA, or modelling) landbase derived during spatial processing to
	incorporate various spatial layers and attributes of interest.
Managed landbase	Areas that are available for forest management activities. Comprised of the combined coniferous
Wanaged landbase	and deciduous landbases. Also referred to as the timber harvesting landbase, net landbase,
	contributing landbase, active landbase.
Managed stand	Stand initiation is caused by anthropogenic disturbance such as harvesting.
Managed stand yield curve	Empirical yield curves fit using C and D crown closure class data from natural stands as a proxy for
Wanaged stand yield eurve	managed stands within the managed landbase. In W13, individual curves were developed by
	DFMP yield stratum site type (fair, medium or good). In FMU W11, individual yield curves were
Mean annual increment	developed by DFMP yield stratum only.
Mean annual increment	The average annual increase in volume of individual trees or stands up to the specified point in time. The MAL shares with different result shares in a track life being higher time and the middle
	time. The MAI changes with different growth phases in a tree's life, being highest in the middle
	years and then slowly decreasing with age. The point at which the MAI peaks is commonly used to
N 1 4 1 1 1 1	identify the biological maturity of the stand and its readiness for harvesting. [SRD 2006]
Merchantable stand volume	Merchantable tree volume summed to represent volume on a per hectare basis.
Merchantable tree volume	A tree-level term; the volume of those portions of a tree bole that meet utilization requirements
Madified wield summe	(stump height, top and bottom diameter limits, log length).
Modified yield curve	Base yield curves modified to reflect specific applied silvicultural treatments or to represent
	geographically localized areas within the DFA with recognized differences in stand composition
Natanal atau d	and/or growth.
Natural stand	Natural stands developed under natural (non-anthropogenic) disturbance regimes. Stand initiation
Natural stand viold auro	was due to natural disturbances such as fire, pest or pathogen outbreak, etc. Empirical yield curves fit using data from all sampled natural stands within the managed landbase.
Natural stand yield curve	
	In W13, individual curves were developed by DFMP yield stratum site type (fair, medium or
	good). In FMU W11, individual yield curves were developed by DFMP yield stratum only.
Net	Indicates that a defect/cull deduction has been applied; this term can be applied to tree-level, plot-
	level or stand-level volumes (e.g., net total tree volume, net merchantable tree volume, net total
	plot volume, net merchantable plot volume, net total stand volume, net merchantable stand
NT 6 4 11 1	volume).
Non-forested landscape	Areas within the gross landbase currently not supporting or being regenerated to forested tree
	species.

Glossary Term	Definition
Nonlinear regression/nonlinear models	The practice of fitting a model where the dependant variable is a nonlinear function of one or more
	independent variables. Nonlinear regression is differentiated from curvilinear regression by the
	fact that derivatives of a nonlinear regression equation with respect to a given parameter depend on
	more than one parameter. One benefit of nonlinear models is that they are often derived on the
	basis of physical and/or biological considerations.
Observation	One plot measurement at a specific point in time. All temporary sample plots have only one
	associated observation. Permanent sample plots may have one or more observations (remeasured
	data) for a single plot.
Partial harvest	A treatment where significantly less than 100% of the trees are harvested from a stand or area. It
i artiar narvest	includes commercial thinning, even when the intention is leading to a final clearcut. [SRD 2006]
Percent increase method	A method for developing managed stand yield curves. Natural stand yield curves are increased by
r creent merease method	a fixed percentage in order to represent fully stocked managed stands.
Piece size	The number of trees required to obtain one cubic meter of gross merchantable tree volume.
Plot	
Plot	Unit of measurement, within which variables of interest are assessed. May be variable or fixed
	radius.
Plot volume	Gross merchantable tree volume within a plot, converted to a per hectare basis (m ³ /ha).
Polygon	A closed geometric entity used to spatially represent area features with associated attributes.
Regeneration lag	The period of time between harvest and establishment of the regenerated stand.
Salvage thinning	A type of thinning in older, natural stands where the age of the stand reduces the likelihood of a
	positive growth response.
Salvage thinning yield curve	A modified yield curve for the PL and SB DFMP yield strata, whereby 33% of the natural stand
	volume is removed at 90 years. There is an assumption of no recovery over time, therefore
	volumes remain at 67% of natural stand volumes until final harvest.
Site index	A relative measure of forest site quality based on the height of top height trees at a specific age
	(usually 50 years).
Site index increase yield curve	Modified yield curve; managed stand yield curve is increased based on calculated site index
	increase by site class (fair, medium or good); applied to PL stands in FMU W13 only.
Site-specific method	Yield curves developed by explicitly incorporating site index as a variable in predictive equations,
-	in order to represent the effects of site on productivity.
Site type	A term used to describe the productivity of a polygon (fair, medium, good). Site type is not
	equivalent to TPR. TPR is assigned using site index calculated for the first listed species in the
	AVI; SI and first species are then used to assign TPR class. Site type is derived by converting the
	site index of the first listed species to the site index for the leading conifer and deciduous species as
	defined by the polygon's DFMP yield stratum classification; SI and leading species are then used to
	assign site type.
Species group	A single species code used to represent one or more AVI species. For example, the AW species
species group	group is comprised of AVI species A and Aw; the LT species group is comprised of La, Lt, and
	Lw.
Success strate	Lw. Used to classify the forested landscape only; includes both the managed landbase and the
Species strata	
	unmanaged landbase. Forested landscape BAP strata roll into species strata either directly or via
0	grouping; the same set of species strata are used for both FMU W11 and FMU W13.
Species type	There are two species types: deciduous and coniferous. Species belonging to the deciduous type
	include aspen, birch and poplar; species belonging to the coniferous type include fir, pine, larch
~ .	and spruce.
Stand	A community of trees sufficiently uniform in species, age, arrangement or condition as to be
	distinguishable as a group in the forest or other growth in the area. A stand may also be that
	polygon as defined in the AVI or Phase III inventory. [SRD 2006]
Stand type	Stand type is not equivalent to stand origin. Stand type reflects stand origin and any silvicultural
	modifiers applied to that stand. For example, a natural stand that has been thinned is considered a
	thinned stand type.
Stand volume	Gross merchantable volume within a stand on a per hectare basis (m ³ /ha); aka gross merchantable
	stand volume.
Strata/Stratification	A classification scheme for defining polygons within the gross landbase. There are four types of
State Statifourin	strata referenced in the Millar Western 2007-2016 DFMP: extended strata, BAP strata, species
	strata, and DFMP yield strata.
	SUALA, AUVITZUNT VICIU SUALA.

Glossary Term	Definition		
Subunit	An area within a Forest Management Unit that is of interest for management purposes. Subunits		
	are comprised of a series of contiguous compartments.		
Subunit-specific aspen yield curves	Modified yield curves; separate empirically-fit natural stand yield curves were developed for two		
	geographically distinct areas of FMU W13, referred to as the Whitecourt/Blue Ridge and		
	McLeod/Virginia Hills subunits; curve fitting methods were the same as for base yield curves.		
Thinning	Removal of trees to enhance the availability of resources for the remaining trees.		
Timber productivity rating	The potential timber productivity of a stand based on the height and age of the first listed species in		
	the AVI overstory string. TPR reflects factors affecting tree growth including soil, topography,		
	climate, elevation, moisture, etc. [AFLW 1991]. TPR is assigned by 1) calculating the site index		
	for the first listed species based on stand-level SI equations and 2) using species and SI to assign a		
	TPR class.		
Timber supply analysis	Calculations/computer models with built-in assumptions regarding forest growth patterns, used to		
	determine the annual allowable cut. (Also calculates the spatial harvest sequence and other non-		
	timber values.) [SRD 2006]		
Total stand volume	Total tree volume summed to represent volume on a per ha basis.		
Total tree volume	A tree-level term; the volume of the entire bole (excluding branches, roots, leaves) of a tree.		
TPR scaling method	At a given age, the volume yield is increased by a percentage (proportion) relative to a base curve.		
Unmanaged landbase	Areas that are unavailable for forest management activities. Also referred to as the passive or non-		
-	contributing landbase.		
Yield curve	A graphical representation of a predictive yield equation. One yield curve is in fact comprised of		
	three curves: a conifer curve, a deciduous curve and a total curve.		
Yield equation	Mathematically describes the relationship between predictor variables (e.g., age, site index) and the		
•	response variable (e.g., yield in terms of volume or piece size).		
Yield table	A summary table showing yield (e.g., volume, piece size) as a function of varying levels of		
	predictor variables (e.g., age, site index) and classification criteria (e.g., DFMP yield stratum, site		
	type).		
Yield strata	A set of strata with associated yield projections (yield curves and/or yield tables). See DFMP yield		
	strata.		

Appendix II. Structure of Terminology

Volumes

- o Tree Volume
 - Total Tree Volume
 - Gross Total Tree Volume
 - Net Total Tree Volume
 - Merchantable Tree Volume
 - Gross Merchantable Tree Volume
 - Net Merchantable Tree Volume
- Stand Volume
 - Total Stand Volume
 - Gross Total Stand Volume
 - Net Total Stand Volume
 - Merchantable Stand Volume
 - Gross Merchantable Stand Volume
 - Net Merchantable Stand Volume

Areas

- Gross Landbase
 - Managed Landbase
 - Forested Landscape
 - Stand Types
 - Managed Stands
 - Natural Stands
 - Unmanaged Landbase

٠

- Forested Landscape
 - Stand Types
 - Managed Stands (pre-existing W11 SB clearcuts only)
 - Natural Stands
- Non-forested Landscape

Strata and Yield Curves

0

- Yield Strata
 - Extended Strata

•

- BAP Strata
 Species Strate
- Species Strata
- DFMP Yield Strata
 - Yield Curves
 - o Base
 - Natural Stand
 - Managed Stand
 - Composite
 - Modified
 - Site Index Increase
 - Thinning (Commercial, Salvage)
 - Athabasca Flats
 - Subunit-Specific Aspen

Appendix III. Sampling Designs: TSPs

The objectives of the Temporary Sample Plot Programs were to 1) collect data on merchantable trees within natural stands in the managed landbase, for the purposes of developing volume estimates for empirical yield curve development, and 2) collect additional data on small trees, shrubs, vegetation, snags and woody debris for the Biodiversity Assessment Project (BAP).

Millar Western (MW) Temporary Sample Plots

Millar Western TSP data collection was undertaken in 1997, 1998, and 2004. Data collection in 1997 and 1998 was restricted to FMU W13 (prior to incorporation of FMU W11); data collection in 2004 was undertaken in both FMUs (for more information, see Millar Western 2004c, 2004d). Various MWFP data collection protocols have been used. Information for all programs is summarized in Table III-1. A total of 584 TSPs were established in the 1997/1998 field seasons and a total of 598 TSPs were established in the 2004/2005 field seasons.

Sampling Frame	TSP 1997	TSP 1998		
Sampling Frame		1SP 1998	TSP 2004	TSP 'BAP ONLY' 2004
		Natural stands in the managed landbase; minimum stand height = 8 m	Natural stands in the managed landbase; minimum age=40 years (no minimum height)	All forested stands; all ages
Sampling Location	n W9 (subset of W13)	W5 (subset of W13)	W13 and W11	W13 and W11
Stand Selection	Random, area-weighted, by height class and yield stratum	Random, area-weighted, by height class and yield stratum	Random, area-weighted, by age class and yield stratum	Random, area-weighted, by BAP habitat type
Plot Selection	Random within stand; 15 m buffer along edge of stand to prevent straddle plots	Random within stand; 15 m buffer along edge of stand to prevent straddle plots	Random within stand; buffer width set to plot radius to ensure entire plot within stand	Random within stand; buffer width set to plot radius to ensure entire plot within stand
Number of Plots	3/stand	3/stand	3/stand	1-3/stand (varies)
Plot Design	Tree and snag plot: 5.64/7.98/11.28 m radius depending on AVI crown closure and stand height	Tree and snag plot: 5.64/7.98/11.28 m radius depending on AVI crown closure and stand height	Tree and snag plot: 5.64/7.98/11.28 m radius depending on AVI crown closure and stand height	Tree and snag plot: 5.64/7.98/11.28 n radius depending on AVI crown closure and stand height
	Sapling plot = 2.82 m radius	Sapling plot = 2.82 m radius	Sapling plot = 3.99 m radius	Sapling plot = 3.99 m radius
	Shrub and ground vegetation plot = 1.78 m radius	Shrub and ground vegetation plot = 1.78 m radius	Shrub and ground vegetation plot = 1.78 m radius	Shrub and ground vegetation plot = 1.78 m radius
	Coarse woody debris = 2 x 10 m transects	Coarse woody debris = 2 x 10 m transects	Coarse woody debris = 3 x 30 m transects Snag cruise = 100 m transect	Coarse woody debris = 3 x 30 m transects Snag cruise = 100 m transect
Data Collection: All Plots		Trees - species, DBH, height, height to live crown, height to dead crown, crown class, number of dead limbs, presence of bark crevice cavities, lichen cover class, quality codes, subsample of breast height ages	Trees - species, DBH, height, height to live crown, crown class, lichen cover class, quality codes, number of coppice suckers, crown development code	Trees - species, DBH, estimated height, estimated height to live crown crown class, lichen cover class, quality codes, number of coppice suckers, crown development code
Data Collection: Additional BAP	Snags - species, DBH, height, decay class, bark class	Snags - species, DBH, height, decay class, bark class	Snags - species, DBH, height, decay class, bark class	Snags - species, DBH, height, decay class, bark class
	Saplings - same as for trees	Saplings - same as for trees	Saplings - same as for trees	Saplings - same as for trees
	Shrubs - species/species class, percent cover class, average height	Shrubs - species/species class, percent cover class, average height	Shrubs - species/species class, percent cover class, average height, total shrub percent cover, total shrub average height	Shrubs - species/species class, percen cover class, average height, total shrub percent cover, total shrub average height
	Ground vegetation - species group, percent cover class	Ground vegetation - species group, percent cover class	Ground vegetation - species group, percent cover class, total percent herb cover, total percent moss cover	Ground vegetation - species group, percent cover class, total percent here cover, total percent moss cover
	diameter at intersection, decay class, inclination, stump top diameter, stump	Coarse woody debris - species group, diameter at intersection, decay class, inclination, stump top diameter, stump height, height above ground	Coarse woody debris - species group, diameter at intersection, decay class, inclination	Coarse woody debris - species group, diameter at intersection, decay class, inclination
			Snag cruise - species group, DBH, estimated height, decay class, bark class, lichen cover class	Snag cruise - species group, DBH, estimated height, decay class, bark class, lichen cover class
Year(s) Collection	1997	1998	2004, 2005	2004
Important Notes		1) BAP data not collected on all plots	 BAP data not collected on all plots; Minor additional birch stand sampling occurred in 2005 under the 2004 TSP protocols 	 Stand selection within W11 not completely random: selected random stands, then discarded those in NW corner of the FMU in order to improve access for sampling

Table III-1. Summary of Millar Western TSP programs to date.

Alberta Sustainable Resources Development (SRD) Temporary Sample Plots

Initial TSP sampling in FMU W11 was undertaken by Alberta SRD in 2000 (SRD 1999). The objective of this sampling was to obtain data sufficient for development of empirical yield curves.

Stands were selected proportionally to the occurrence of crown density, species and age classes. Three volume sampling plots were placed within each selected stand. The center of the stand was located, and each plot was located 50 m from plot center at bearings of 0, 120 and 240 degrees. Plots were offset to avoid all anthropogenic disturbances (*e.g.*, roads, seismic lines, well sites) and naturally non-vegetated areas (*e.g.*, lakes, rivers, rock outcroppings). Plots were circular, with a fixed, 5.64 m radius (0.01 ha) main plot and a 2.82 m radius (0.0025 ha) circular subplot nested within the main plot.

Within the main plot, all trees greater than or equal to 9.1 cm DBH were measured. Species, height, height to live crown, DBH, stump diameter, crown class and condition codes were recorded for each tree. On selected trees, breast height age and increment width (0-10 years and 11-20 years) were recorded. Within the subplot, the same data were collected on trees under 9.1 cm DBH and greater than 1.3 m in height. Presence of slash, arboreal lichen, fire scars, stand structure, fuel continuity, woody shrub density class, average woody shrub height and dominant shrub species were recorded for each plot.

A total of 359 TSPs were established in 2000.

Appendix IV. Sampling Designs: Special Area TSPs

Special Area Temporary Sample Plot Programs are one-time sampling programs used to address specific research questions or data needs. There is no ongoing sampling component to these programs, although similar sampling may occur in the future if new questions arise.

Windfall Burn (WB) Temporary Sample Plots

The objective of the Windfall Burn sampling program was to gather data sufficient to determine if pine stands within the Windfall Burn were exhibiting signs of repression, and to develop an empirical yield curve within the Windfall Burn if necessary (Millar Western 2005c).

The sampling population was comprised of all single story pine-dominated conifer stands with 50% crown closure or greater (higher crown closures were presumed to be the stand types with potential for repression) within the Windfall Burn fire boundary (fire year = 1956). The population was stratified into crown closure class (5, 6, 7 or 8) and TPR class (F, M, G). The desired sample size was determined for each crown closure class/TPR combination based upon total area, knowledge of stand variability and number of stands available for sampling, with a minimum of 10 plots per combination.

Sampling occurred in 2003. Within each selected stand, one plot was established. Each plot had three separate point counts arranged in an equilateral triangle with 20 m sides. At each point, all trees ≥ 6 cm DBH were tallied using a BAF 2 prism, and DBH was measured for each. At each plot, height, DBH and age at stump height (30 cm) was recorded for an average DBH tree.

A total of 498 points (166 plots) were sampled.

Athabasca Flats Selective Logging (AFSL) Temporary Sample Plots

The Athabasca Flats selective logging area is a contiguous area of high productivity, generally white spruce leading, stands located along the southern edge of the Athabasca river. The area is approximately 920 ha in size. Roughly 2/3 of this area has already undergone selective logging (current to 2005). The objective of this sampling program was to gather data sufficient to develop a yield projection specific to these areas (Millar Western 2004a).

Data collection was undertaken in 2005. All areas in which selective logging had been completed (approximately 645 ha) were sampled. A grid of 57 points was established across this area, irrespective of polygon boundaries.

At each grid point, a 5.64 m radius (100 m^2) plot was established. For all live trees $\geq 10 \text{ cm}$ DBH, species, DBH, height, response increment (diameter increment since harvesting) and preharvest increment (diameter increment prior to harvesting) were recorded. For all live trees $\geq 1.3 \text{ m}$ in height and < 10 cm DBH, species and DBH were recorded. Species and stump diameter were recorded for all stumps with a diameter of $\geq 15 \text{ cm}$ at stump height (30 cm).

Appendix V. Sampling Designs: PSPs

The objective of the Millar Western PSP program is to provide long-term, forest-wide, unbiased estimates of forest vegetation change, both in terms of timber and non-timber values (Millar Western 2004b).

Permanent sample plot establishment began in 1995. In 1995 and 1996, PSPs were established using a combination of systematic and stratified random sampling. After 1996, a 3000 m x 3000 m grid (oriented N-S and E-W) was established across the Millar Western FMA area, and all subsequent PSPs have been established on this grid, with the exception of Enhanced Forest Management PSPs.

There are four types of permanent sample plots within the PSP program: Standard Permanent Sample Plots (SPSPs), Plantation Permanent Sample Plots (PPSPs), Non-Productive Permanent Sample Plots (NPSPs) and Enhanced Forest Management Permanent Sample Plots (EFMPSPs). Currently, all PSPs are on a five to ten year remeasurement schedule.

PSP data collection protocols vary slightly depending on the type of stand the grid point falls in, or whether or not it is an EFMPSP. Data collection protocols are described in the following sections. For more information, refer to Millar Western (2004b).

Standard Permanent Sample Plots (SPSPs)

Standard PSPs are established when a grid point falls on a natural stand within the managed landbase.

An 11.28 m radius (0.04 ha) main plot is established with a 20 m buffer. Within this plot, all trees ≥ 1.3 m in height are tagged, stem mapped and measured (species, DBH, height, height to live crown, crown class, crown development, quality codes, number of coppice suckers, and lichen class). Breast height age is collected from four top height trees of the main species; in mixedwood stands, both the leading conifer and deciduous species are sampled. A 30.9 m radius (0.3 ha) snag plot is centered at the main plot, within which all snags ≥ 30 cm DBH are measured (species class, DBH, height, decay class and bark class).

A 1.78 m radius (10 m2) high shrub plot is used to sample all shrubs ≥ 3.0 m in height (percent cover and average height by species, total percent shrub cover). Eight 1 m2 plots (four pairs placed 10 m from plot center at 45°, 135°, 225° and 315°) are established for sampling lower vegetation: shrubs ≥ 0.5 m and < 3 m in height (percent cover, average height and count by species), trees ≥ 0.2 m and ≤ 1.3 m in height (percent cover, average height and count by species), and herbaceous/short shrubs (< 0.5 m)/short trees (< 0.2 m)/other nonwoody plants (percent cover by species group, total percent moss cover, total percent herbaceous cover). Three 30 m transects are used to sample woody debris ≥ 7.5 cm at the point of intersection (diameter, position, decay class).

Plantation Permanent Sample Plots (PPSPs)

Plantation PSPs are established when a grid point falls on a managed stand within the managed landbase, or when a Standard PSP is harvested and the PSP is subsequently re-established. Reestablishment will occur immediately after planting in order to track seedling growth and survival; in leave for natural (LFN) stands, reestablishment will occur as soon as possible after harvesting in order to capture vegetation and site dynamics.

All protocols outlined for SPSPs will be followed for PPSPs, with the following exceptions:

- 1. In addition to tagging all seedlings ≥ 1.3 m in height, all planted seedlings under 1.3 m in height will be tagged. Unlike other tagged seedlings, these seedlings will not be assessed for height to live crown, DBH, crown class, lichen class or breast height age.
- 2. Regeneration type (natural, planted, advance, unknown) will be assigned to all tagged stems.

Non-Productive Permanent Sample Plots (NPSPs)

Non-Productive PSPs are established when a grid point falls on a natural stand within the unmanaged landbase. All protocols outlined for SPSPs will be followed, although for certain NPSP types (*e.g.*, shrubs or grasses), the plot will be devoid of trees.

Enhanced Forest Management Permanent Sample Plots (EFMPSPs)

EFMPSPs are established to monitor the growth response to enhanced forest management activities. Currently, these activities are restricted to thinning. EFMPSPs are not established on a grid; rather, plots are located within stands selected for thinning treatments. In addition, rather than a single PSP, four EFMPSPs are established in selected stands. One EFMPSP is randomly located within a control (unaltered) portion of the stand. Three additional EFMPSPs are established within the thinned portion of the stand: the first plot is randomly located prior to harvest within the treated area, and the remaining two plots are established following harvest to create a triangular layout within the treated area.

All protocols outlined for SSPs will be followed for EFMPSPs, with the addition of crown width measurements on all tagged stems.

There are currently seven sets of EFMPSPs in thinned stands, five of which have five-year remeasurement data and two of which have establishment data only. Four of these sets are located within salvage thinned stands and three of these sets are located within commercially thinned stands. There are five additional sets of EFMPSPs established as plot pairs (five plot pairs - one control PSP and one treated PSP – total 10 EFMPSPs); the plot pair EFMPSPs are comprised of one pair of plots in commercially thinned stands and four pairs of plots in salvage thinned stands. All plot pairs have five-year remeasurement data. There is also a single EFMPSP (treated – no control) located within a salvage thinned stand.

Appendix VI. Windfall Burn Pine Stand Analysis

In order to proceed with yield curve development, an assessment was required to determine whether pure pine stands growing within the Windfall Burn were exhibiting different growth patterns from pure pine stands outside of the Windfall Burn area. Although the burn area was fairly dense in some areas, Millar Western foresters felt that these stands were capable of producing yields similar to pine stands in the rest of the FMA area.

In order to proceed with yield curve development, an assessment was required to determine whether pure pine stands growing within the Windfall Burn were exhibiting different growth patterns from pure pine stands outside of the Windfall Burn area.

Data Sources

Three sources of data were used in this analysis.

TSP plots had been sampled both inside and outside the Windfall Burn, as had PSP plots. TSPs were established in the 1997/1998 field seasons using stratified random sampling. PSP plots were established from 1996 onwards, on a fixed grid system. Both TSPs and PSPs were sampled using fixed radius plots. Sampling protocols for TSP and PSP plots are described in Appendix III and Appendix V, respectively.

Additional plots have been sampled exclusively within the Windfall Burn boundaries. These plots are referred to as KBM plots and are variable radius plots. Plots were established in 2003, in stands with \geq 50% crown closure using stratified random sampling. These stand types were targeted as they were the stand types most likely to exhibit repression, if repression was occurring.

Within each selected stand, one central plot was established. Each plot had three separate point counts arranged in an equilateral triangle with 20 m sides. At each point, all trees \geq 6 cm DBH were tallied using a BAF 2 prism, and DBH was measured for each. At each plot, height, DBH and age at stump height (30 cm) was recorded for an average DBH tree. A total of 166 KBM plots were established, with 498 associated sampling points.

Data Screening

Since the landbase had not been fully developed, pine stands for comparison were identified using AVI attributes. TSP, PSP and KBM plot locations were intersected with the FMU W13 AVI in order to do so.

Only stands within the McLeod subunit were considered for inclusion in the analysis, to ensure that geographic influence on between-plot variability was limited.

Plots with AVI species1 equal to 100% pine, with an overstory crown closure class of C or D, a blank understory species layer, a blank understory nonforested layer, and a productive TPR (fair, medium or good) were selected. Based on a preliminary landbase (Version 4), any plots in the unmanaged landbase were removed. Plots with no pine age information were also discarded.

From the remaining plots, any plots with a burn modifier and a burn year or origin of 1956 were deemed Windfall Burn plots. All other plots were deemed non-Windfall Burn plots.

Methods

TSP and PSP data were pooled for analysis. After data screening, a total of 19 TSP/PSP plots were available for analysis. A total of 81 KBM plots were available for analysis (Table VI-1).

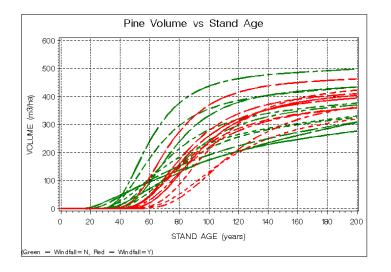
Table VI-1. Number of plots used in GYPSY runs by plot and stand type.

Stand	Data	Plot	Number
Туре	Туре	Туре	of Plots
Windfall	KBM	Variable Radius	81
	PSP/TSP	Fixed Radius	8
non-Windfall	PSP/TSP	Fixed Radius	11

Direct comparisons of plot volumes inside and outside the Windfall Burn area were not possible, since all plots outside of the Windfall Burn area were at least 20 years older than those inside the burn area. As such, GYSPY simulations were employed to create volume-age trajectories for comparison.

GYPSY simulations were run in two manners:

- 1) Individual plot simulations
 - a. Measured age and height from pine trees in plots were used to determine site index for the plot.
 - b. Plot density at measurement age was used to obtain the *stand density factor* (stand density at a reference breast height age of 50 years) for the plot. Stand density factor was used to obtain initial density (sph) for GYPSY simulation by using known age-mortality relationships.
 - c. GYPSY was used to simulate pine volume over age for each plot using site index and initial stand density as inputs.
- 2) Average plot simulations
 - a. Measured height and age from pine trees in plots were used to determine site index for the plot.
 - b. Plot density at measurement age was used to obtain the stand density factor (stand density at a reference breast height age of 50 years) for the plot. Stand density


factor was used to obtain initial density (sph) for GYPSY simulation by using known age-mortality relationships.

- c. Average site index and average initial density was calculated for each group of plots: PSP/TSP Windfall, PSP/TSP Non-Windfall, and KBM Windfall.
- d. GYPSY was used to simulate a single pine volume over age curve for each group of plots using average site index and average initial stand density as inputs.

Results

Simulations based on individual plot data (TSP and PSP plots) from both inside and outside the Windfall Burn area are shown in Figure VI-1. Note that although Windfall Burn areas begin to accumulate volume later than some non-Windfall stands, volumes at maturity are very similar, given the small sample size.

The difference in onset of volume accumulation may reflect accuracy in AVI ages: while Windfall Burn stands have a known year of disturbance, non-Windfall Burn stands have an estimated year of origin.

Figure VI-1. GYPSY simulations of individual TSP/PSP plots, Windfall (red) vs. non-Windfall (green).

A single GYPSY simulation for averages by plot type (Windfall TSP/PSP, non-Windfall TSP/PSP and KBM Windfall) is shown in Figure VI-2. Volume over age is similar for all three curves, although differences do exist. Keeping in mind that the sample size for non-Windfall plots is quite small, there does not appear to be sufficient evidence to support the use of a 50% reduction in volume in Windfall Burn stands. As such, Windfall Burn plots were used in pine yield curve development and no separate yield curves were created for the 2007-2016 DFMP.

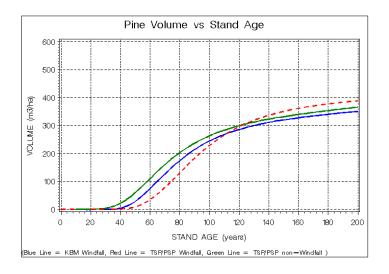


Figure VI-2. GYPSY simulations based on average plot data, Windfall PSP/TSP (red), non-Windfall PSP/TSP (green), KBM Windfall (blue).

Appendix VII. Site Index Conversion Equations

For site-specific yield curve development, AVI-based site index estimates were required for the leading conifer and deciduous species as defined by a polygon's DFMP yield stratum assignment. However, AVI-based site index could only be calculated for overstory species 1, which may or may not have been either of the two species. For this reason, site index conversion equations were required, so that the AVI-based SI from the first listed species could be converted to an AVI-based SI for the species of interest.

Site index conversion equations were developed as follows:

- 1. Site index was calculated for all dominant and codominant trees in the base TSP/PSP dataset that had measured ages and heights. Site index was predicted for each tree using equations from the AVI 2.1 manual, in order to be consistent with how site index was assigned to natural stands within the managed landbase.
- 2. Trees were grouped into four classes:
 - AW (aspen, birch and poplar)
 - PL (all pines)
 - SW (white spruce and firs)
 - SB (black spruce and larches)
- 3. Plots with more than one of the above species classes present in the plot were used to fit site index conversion equations. A conversion equation was fit for all possible group combinations using linear regression. For example, plots with both PL and SW were used to fit PL -> SW conversion equations as well as SW -> PL conversion equations (results will differ depending on which is the dependant and which is the independent variable, since the regression always attempts to minimize the variability in one direction only). The equation form was (Nigh 1995):

$$SI_i = m * SI_i$$

Where:

 SI_i = site index of species i

 SI_i = site index of species j

m = slope parameter

Coefficients for the models are presented in Table VII-1. Site index conversion tables are provided in Table VII-2 to Table VII-5.

Leading	Species 1	
Species Group	Species Group	Slope
(Convert To)	(Convert From)	Coefficient
AW	PL	1.0142321
	SB	1.4511591
	SW	1.1318216
PL	AW	0.9592976
	SB	1.3297274
	SW	1.1513887
SB	AW	0.6524253
	PL	0.7071435
	SW	0.8332316
SW	AW	0.8168247
	PL	0.7858179
	SB	1.1352982

Table VII-2. AW	site index	conversion table.
-----------------	------------	-------------------

AW Site	Predicted Site Index (m)		
Index (m)	PL	SB	SW
5 6	4.80	3.26	4.08
6	5.76	3.91	4.90
7	6.72	4.57	5.72
<u>8</u> 9	7.67	5.22	6.53
9	8.63	5.87	7.35
10	9.59	6.52	8.17
11	10.55	7.18	8.99
12	11.51	7.83	9.80
13	12.47	8.48	10.62
14	13.43	9.13	11.44
15	14.39	9.79	12.25
16	15.35	10.44	13.07
17	16.31	11.09	13.89
18	17.27	11.74	14.70
19	18.23	12.40	15.52
20	19.19	13.05	16.34
21	20.15	13.70	17.15
22	21.10	14.35	17.97
23	22.06	15.01	18.79
24	23.02	15.66	19.60
25	23.98	16.31	20.42

Table VII-3. PL site index conversion table.

PL Site	Predicted Site Index (m)		
Index (m)	AW	SB	SW
5 6	5.07	3.54	3.93
	6.09	4.24	4.71
7	7.10	4.95	5.50
8	8.11	5.66	6.29
9	9.13	6.36	7.07
10	10.14	7.07	7.86
11	11.16	7.78	8.64
12	12.17	8.49	9.43
13	13.19	9.19	10.22
14	14.20	9.90	11.00
15	15.21	10.61	11.79
16	16.23	11.31	12.57
17	17.24	12.02	13.36
18	18.26	12.73	14.14
19	19.27	13.44	14.93
20	20.28	14.14	15.72
21	21.30	14.85	16.50
22	22.31	15.56	17.29
23	23.33	16.26	18.07
24	24.34	16.97	18.86
25	25.36	17.68	19.65

Table VII-4. SB site index conversion table.

SB Site	Predicted Site Index (m)		
Index (m)	AW	PL	SW
5 6	7.26	6.65	5.68
6	8.71	7.98	6.81
7	10.16	9.31	7.95
8 9	11.61	10.64	9.08
	13.06	11.97	10.22
10	14.51	13.30	11.35
11	15.96	14.63	12.49
12	17.41	15.96	13.62
13	18.87	17.29	14.76
14	20.32	18.62	15.89
15	21.77	19.95	17.03
16	23.22	21.28	18.16
17	24.67	22.61	19.30
18	26.12	23.94	20.44
19	27.57	25.26	21.57
20	29.02	26.59	22.71
21	30.47	27.92	23.84
22	31.93	29.25	24.98
23	33.38	30.58	26.11
24	34.83	31.91	27.25
25	36.28	33.24	28.38

Table VII-5.	SW site	index	conversion table.
--------------	---------	-------	-------------------

SW Site	Predicted Site Index (m)		
Index (m)	AW	PL	SB
5	5.66	5.76	4.17
6	6.79	6.91	5.00
7	7.92	8.06	5.83
8	9.05	9.21	6.67
9	10.19	10.36	7.50
10	11.32	11.51	8.33
11	12.45	12.67	9.17
12	13.58	13.82	10.00
13	14.71	14.97	10.83
14	15.85	16.12	11.67
15	16.98	17.27	12.50
16	18.11	18.42	13.33
17	19.24	19.57	14.16
18	20.37	20.72	15.00
19	21.50	21.88	15.83
20	22.64	23.03	16.66
21	23.77	24.18	17.50
22	24.90	25.33	18.33
23	26.03	26.48	19.16
24	27.16	27.63	20.00
25	28.30	28.78	20.83

Appendix VIII. Pine Site Index Increase Discussion

There are few existing studies of the differences between pre-harvest and post-harvest site indices for pine stands in Alberta. Two key documents are those of Huang *et al.* (2004) and Dempster (2004). A study by The Forestry Corp. was undertaken in the Millar Western FMA area and is also summarized here.

Huang, S., R.A. Monserud, T. Braun, H. Lougheed and O. Bakowsky. 2004. Comparing site productivity of mature fire-origin and post-harvest juvenile Lodgepole pine stands in Alberta. Can. J. For. Res. 34: 1181-1191.

This article compared site indices of 22 mature fire-origin stands to adjacent post-harvest juvenile stands using paired plot methods.

The original study was carried out by Udell and Dempster in 1987, who found site index increases of 25-30% between mature fire-origin and post-harvest stands in Weldwood's FMA area (now West Fraser Hinton).

The sites were revisited over 10 years later by Huang *et al.*, when post-harvest stands were (on average) 31 years of age, to determine whether site index increases were maintained over time.

Based on their analysis, the site index of post-harvest juvenile stands was found to be 27-35% higher than mature fire-origin stands. Average site index in post-harvest stands was between 18.09 and 18.89 m (depending on SI equation used), while average site index in mature pre-harvest stands was between 13.36 and 14.01 m using the same equations. This represents a site index increase of 4.73-4.88 m across all site types.

Similar studies in BC are also cited in this article. Authors cited site index increases ranging from 2.96 to 6.12 m. Again, these represent average increases across all site types.

Dempster, W.R. 2004. Comparison of pre-harvest and post-harvest site indices. Foothills growth and yield association regenerated Lodgepole pine project. Hinton, Alberta. http://www.fmf.ca/publications.html#GrowthAndYield

This study assessed pine site index using paired plot and PSP data from Weldwood's FMA area (now West Fraser Hinton).

50 stands were sampled using paired plot methods, with 3 plots pairs per stand. Breast height age ranged from 5 to 29 years and spanned 5 ecosite "categories".

Based on paired plot data, the overall average site index increase was 3.65 m, well within the ranges cited in Huang *et al.* for BC sites, and calculated by Huang *et al.* in their study. By site

type, average site index increases were 6.7 m for poor sites, 2.8 m for medium sites, and 0.3 m for rich sites.

43 PSPs with pre-and post harvest information were also assessed. Overall average site index increase was higher than using paired plot data, at 4.4 m across all site types.

The Forestry Corp. 1999. Managed stand site index study, Lodgepole pine. Unpublished report prepared for Millar Western Forest Products Ltd. Edmonton, Alberta.

The study used paired plot data collected within Millar Western's FMA area (20 stands) and Blue Ridge Lumber's FMA area (4 stands), with three plot pairs per stand.

Based on the paired plot data, the overall site index increase was 4.86 m, which is in line with Huang *et al.*'s findings and similar to results from the Foothills Model Forest data. This also fits within the range cited by Huang *et al.* from studies in BC. Recall that this is an average across all site types.

A regression equation was generated to estimate site index increase for pine relative to "parent stand" site index, as follows:

$$SI_m = -0.0685SI_f^2 + 1.5332SI_f - 0.7465$$

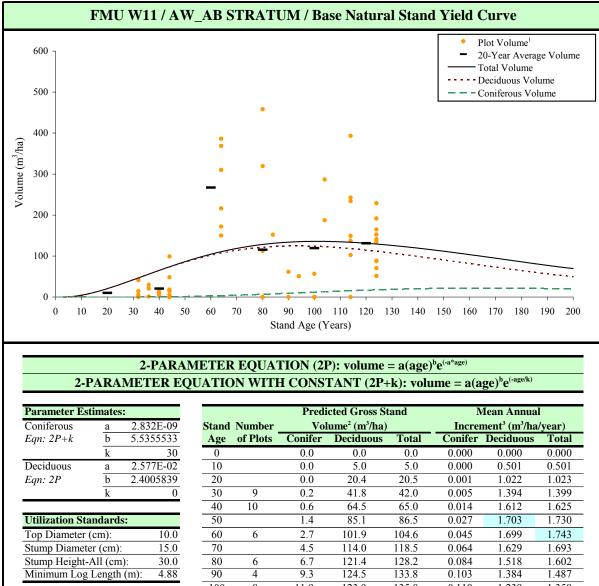
Where:

 SI_m = site index of managed stand (m)

 SI_f = site index of fire origin parent stand (m)

This was used to estimate managed stand site index as a function of parent stand site index:

Table VIII-1. Estimates of managed stand site index for Lodgepole pine based on fire
origin site index.

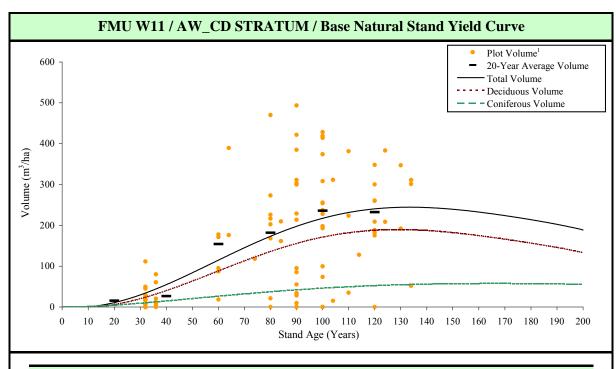

Fire Origin Site Index	Increase/ Decrease	Regenerating Site Index
10	7.7	18
12	7.7	20
14	7.3	21
16	6.2	22
18	4.7	23
20	2.5	23
22	-0.2	22

The results from the Millar Western study are not outside of the range of values determined by Dempster or Huang *et al.*

Appendix IX. FMU W11 Base Natural Stand Yield Curves

Stratum Summary:	
Total Number of Plots:	60
Stratum Area (ha) :	8,140

Stratum as a proportion of total managed landbase, FMU W11:



$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	10		0.0	5.0	5.0	0.000	0.501	0.501
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	20		0.0	20.4	20.5	0.001	1.022	1.023
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	30	9	0.2	41.8	42.0	0.005	1.394	1.399
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	40	10	0.6	64.5	65.0	0.014	1.612	1.625
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	50		1.4	85.1	86.5	0.027	1.703	1.730
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	60	6	2.7	101.9	104.6	0.045	1.699	1.743
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	70		4.5	114.0	118.5	0.064	1.629	1.693
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	80	6	6.7	121.4	128.2	0.084	1.518	1.602
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	90	4	9.3	124.5	133.8	0.103	1.384	1.487
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	100	8	11.9	123.9	135.8	0.119	1.239	1.358
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	110	7	14.5	120.4	134.9	0.131	1.095	1.226
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	120	10	16.8	114.7	131.4	0.140	0.956	1.095
150 21.2 90.4 111.7 0.141 0.603 0.744 160 21.7 81.6 103.3 0.136 0.510 0.646 170 21.8 73.0 94.7 0.128 0.429 0.557 180 21.4 64.7 86.1 0.119 0.359 0.478 190 20.7 56.9 77.6 0.109 0.300 0.408	130		18.7	107.4	126.1	0.144	0.826	0.970
160 21.7 81.6 103.3 0.136 0.510 0.646 170 21.8 73.0 94.7 0.128 0.429 0.557 180 21.4 64.7 86.1 0.119 0.359 0.478 190 20.7 56.9 77.6 0.109 0.300 0.408	140		20.2	99.2	119.4	0.144	0.708	0.853
17021.873.094.70.1280.4290.55718021.464.786.10.1190.3590.47819020.756.977.60.1090.3000.408	150		21.2	90.4	111.7	0.141	0.603	0.744
18021.464.786.10.1190.3590.47819020.756.977.60.1090.3000.408	160		21.7	81.6	103.3	0.136	0.510	0.646
190 20.7 56.9 77.6 0.109 0.300 0.408	170		21.8	73.0	94.7	0.128	0.429	0.557
	180		21.4	64.7	86.1	0.119	0.359	0.478
200 19.7 49.7 69.4 0.098 0.249 0.347	190		20.7	56.9	77.6	0.109	0.300	0.408
	200		19.7	49.7	69.4	0.098	0.249	0.347

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION (2P): volume = a(age)^be^(-a*age) 2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(-age/k)

Parameter Es	timates	:
Coniferous	а	1.236E-02
Eqn: 2P	b	2.0541793
	k	0
Deciduous	а	6.666E-04
Eqn: $2P+k$	b	3.2473264
	k	40

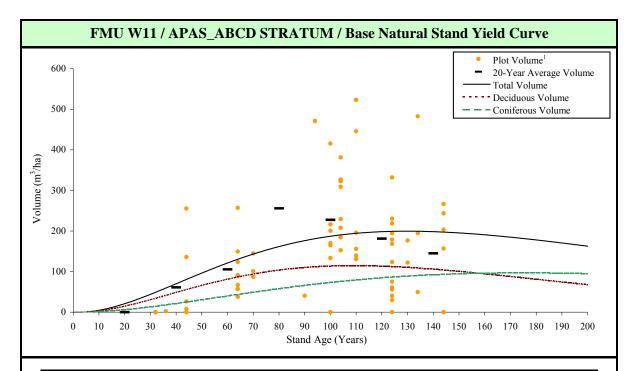
Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-All (cm):	30.0
Minimum Log Length (m):	4.88

Stratum Summary:	
Total Number of Plots:	105
Stratum Area (ha) Nat:	41,554
Stratum Area (ha) Mgd:	3,492

Stratum as a proportion of total managed landbase, FMU W11:

48%

52%


		Predi	cted Gross S	tand	N	Iean Annual	l
Stand	Number	Vol	ume ² (m ³ /ha)		Increa	nent ³ (m ³ /ha	/year)
Age	of Plots	Conifer	Deciduous	Total	Conifer	Deciduous	Total
0		0.0	0.0	0.0	0.000	0.000	0.000
10		1.2	0.9	2.2	0.124	0.092	0.215
20		4.5	6.8	11.3	0.227	0.339	0.566
30	32	9.2	19.7	28.9	0.308	0.657	0.965
40		14.7	39.1	53.8	0.368	0.977	1.345
50		20.6	62.8	83.4	0.412	1.256	1.668
60	7	26.5	88.4	114.9	0.441	1.474	1.915
70	1	32.1	113.6	145.7	0.458	1.623	2.082
80	10	37.3	136.5	173.8	0.466	1.707	2.173
90	17	42.0	155.9	197.9	0.467	1.732	2.199
100	17	46.1	170.9	217.0	0.461	1.709	2.170
110	5	49.5	181.4	230.9	0.450	1.649	2.099
120	11	52.4	187.4	239.7	0.436	1.562	1.998
130	5	54.5	189.3	243.8	0.420	1.456	1.875
140		56.1	187.5	243.6	0.401	1.339	1.740
150		57.2	182.7	239.8	0.381	1.218	1.599
160		57.7	175.5	233.1	0.360	1.097	1.457
170		57.7	166.4	224.1	0.340	0.979	1.318
180		57.4	156.0	213.4	0.319	0.867	1.185
190		56.7	144.8	201.5	0.298	0.762	1.060
200		55.6	133.2	188.9	0.278	0.666	0.944

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. 3 Maximum MAI highlighted in blue.

⁴ Natural stand yield curve will also represent managed stands, therefore managed stand areas are included here.

2-PARAMETER EQUATION (2P): volume = a(age)^be^(.a*age) 2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(.age/k)

Predicted Gross Stand

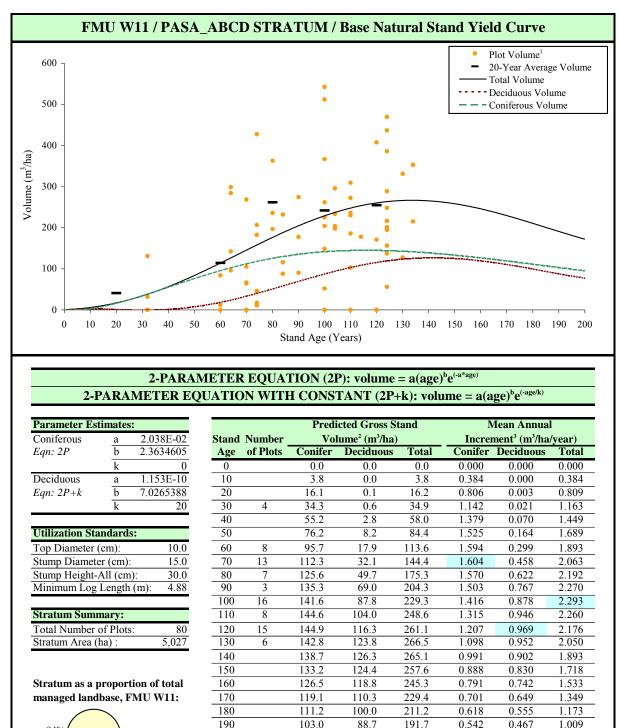
Parameter Estimates:						
Coniferous	а	1.233E-02				
Eqn: 2P	b	2.1545293				
	k	0				
Deciduous	а	2.132E-02				
Eqn: 2P	b	2.3267092				
	1.	0				

Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-All (cm):	30.0
Minimum Log Length (m):	4.88

Stratum Summary:

Total Number of I	Plots: 72
Stratum Area (ha)	: 4,488

Stratum as a proportion of total managed landbase, FMU W11:


Stand	Number	mber Volume ² (m ³ /ha)			Increment ³ (m ³ /ha/year)			
Age	of Plots	Conifer	Deciduous	Total	Conifer	Deciduous	Total	
0		0.0	0.0	0.0	0.000	0.000	0.000	
10		1.6	3.7	5.2	0.156	0.366	0.521	
20		6.1	14.8	20.9	0.306	0.741	1.047	
30	4	13.0	30.8	43.7	0.432	1.025	1.457	
40	6	21.3	48.5	69.8	0.533	1.213	1.746	
50		30.5	65.9	96.4	0.609	1.318	1.927	
60	9	39.9	81.4	121.3	0.665	1.356	2.021	
70	3	49.1	94.1	143.3	0.702	1.344	2.046	
80		57.9	103.7	161.7	0.724	1.297	2.021	
90	2	66.0	110.3	176.2	0.733	1.225	1.958	
100	16	73.2	113.8	187.0	0.732	1.138	1.870	
110	6	79.5	114.8	194.3	0.722	1.044	1.766	
120	15	84.7	113.6	198.3	0.706	0.947	1.652	
130	5	89.0	110.6	199.5	0.684	0.850	1.535	
140	6	92.3	106.1	198.4	0.659	0.758	1.417	
150		94.6	100.7	195.3	0.631	0.671	1.302	
160		96.1	94.5	190.7	0.601	0.591	1.192	
170		96.8	88.0	184.8	0.570	0.517	1.087	
180		96.8	81.2	178.0	0.538	0.451	0.989	
190		96.2	74.4	170.5	0.506	0.391	0.898	
200		94.9	67.7	162.7	0.475	0.339	0.813	

Mean Annual

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

6%

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

94.9

200

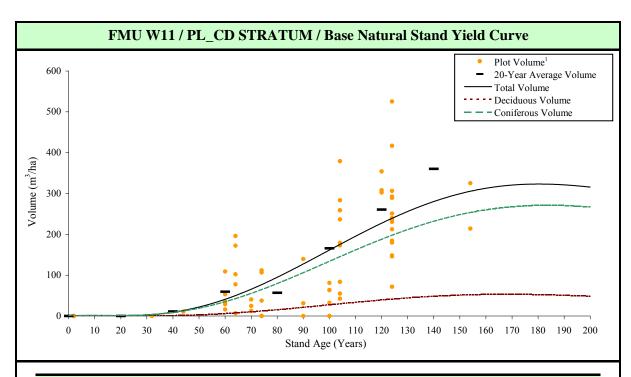
 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. 3 Maximum MAI highlighted in blue.

172.0

77.1

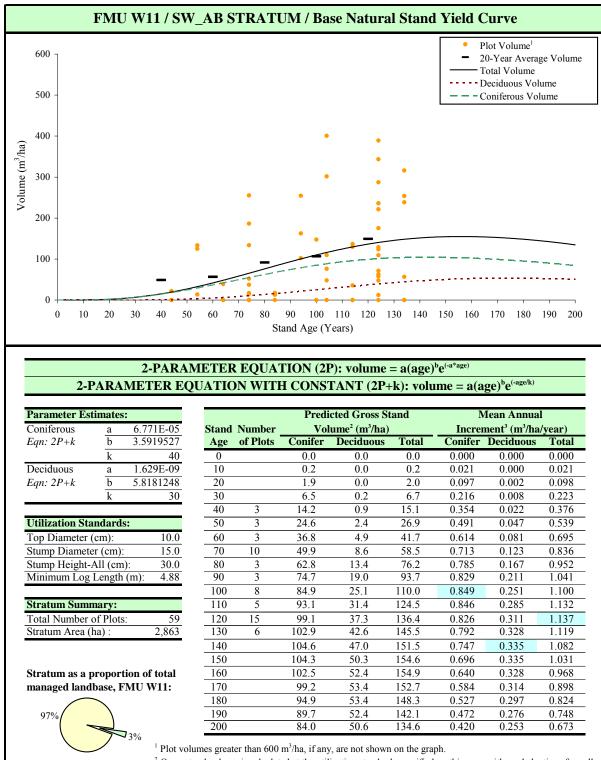
0.474

0.386


0.860

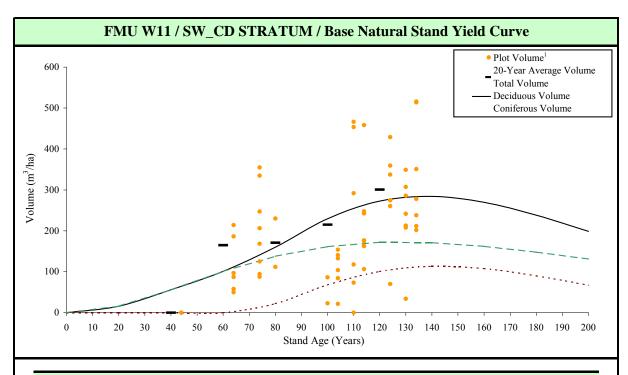
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION (2P): volume = a(age)^be^(-a*age) 2-P


PARAMETER EQUATIO	N WITH	CONSTANT	(2P+k): volume = $a(age)^{b}e^{(-age/k)}$	

Parameter Es	timates:				Predi	cted Gross St	and	Mean Annual			
Coniferous a 1.032E-06		Stand	Number	Vol	ume ² (m ³ /ha)		Increment ³ (m ³ /ha/year)				
Eqn: 2P+k	b	4.5998205	Age	of Plots	Conifer	Deciduous	Total	Conifer	Deciduous	Tota	
	k	40	0	3	0.0	0.0	0.0	0.000	0.000	0.000	
Deciduous	а	4.240E-09	10		0.0	0.0	0.0	0.003	0.000	0.003	
Eqn: 2P+k	b	5.6302981	20		0.6	0.0	0.6	0.030	0.002	0.032	
	k	30	30	2	3.0	0.3	3.4	0.101	0.011	0.112	
			40	1	8.9	1.2	10.0	0.222	0.029	0.251	
Utilization Sta	andards:		50		19.3	2.9	22.2	0.386	0.059	0.445	
Top Diameter	(cm):	10.0	60	10	34.8	5.9	40.7	0.580	0.098	0.678	
Stump Diamete	er (cm):	15.0	70	9	55.0	10.1	65.1	0.786	0.144	0.930	
Stump Height-	All (cm):	30.0	80		79.2	15.3	94.5	0.990	0.191	1.181	
Minimum Log	Length (m): 4.88	90	3	106.0	21.3	127.3	1.178	0.236	1.414	
			100	17	134.1	27.6	161.6	1.341	0.276	1.616	
Stratum Sum	nary:		110		161.9	33.8	195.7	1.472	0.307	1.779	
Total Number	of Plots:	66	120	18	188.1	39.5	227.6	1.568	0.329	1.897	
Stratum Area (ha) Nat :	6,844	130		211.7	44.4	256.1	1.629	0.342	1.970	
Stratum Area (ha) Mgd ⁴	: 1,162	140		231.9	48.3	280.2	1.656	0.345	2.001	
			150	3	248.0	51.0	299.1	1.654	0.340	1.994	
Stratum as a j	proportio	on of total	160		259.9	52.6	312.5	1.625	0.329	1.953	
managed land	base, FN	4U W11:	170		267.5	53.0	320.6	1.574	0.312	1.886	
			180		271.0	52.4	323.4	1.506	0.291	1.797	
).		190		270.7	50.9	321.6	1.425	0.268	1.693	
91%		9%	200		266.9	48.7	315.6	1.334	0.244	1.578	

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.


⁴ Natural stand yield curve will also represent managed stands, therefore managed stand areas are included here.

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION (2P): volume = a(age)^be^(-a*age) 2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(-age/k)

Conifer

0.0

3.6

15.6

33.9

Stand Number

Age 0

10

20

30

of Plots

Parameter Es	timates	:
Coniferous	а	1.852E-02
Eqn: 2P	b	2.3724492
	k	0
Total ³	а	4.049E-06
Eqn: $2P+k$	b	4.6004187
	k	30

Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-All (cm):	30.0
Minimum Log Length (m):	4.88

Stratum Summary:	
Total Number of Plots:	63
Stratum Area (ha) Nat:	5,116
Stratum Area (ha) Mgd ⁵ :	1,484

Stratum as a proportion of total managed landbase, FMU W11:

929

20		00.7	0.0	00.7	1.102	0.000	
40	3	55.8	0.0	55.8	1.395	0.000	
50		78.7	0.0	78.7	1.575	0.000	
60	6	100.8	0.0	100.8	1.681	0.000	
70	8	120.8	0.1	120.8	1.725	0.001	
80	2	137.8	22.3	160.0	1.722	0.278	
90		151.4	45.8	197.1	1.682	0.508	
100	9	161.5	67.9	229.3	1.615	0.679	
110	14	168.2	86.5	254.8	1.529	0.787	
120	6	171.8	100.6	272.4	1.432	0.838	
130	15	172.6	109.5	282.1	1.328	0.842	
140		171.0	113.2	284.2	1.221	0.809	
150		167.4	112.4	279.7	1.116	0.749	
160		162.1	107.7	269.7	1.013	0.673	
170		155.5	100.0	255.4	0.915	0.588	
180		148.0	90.1	238.1	0.822	0.501	
190		139.8	79.0	218.8	0.736	0.416	
200		131.2	67.3	198.5	0.656	0.337	

Predicted Gross Stand

Deciduous⁴

0.0

0.0

0.0

0.0

Total

0.0

3.6

15.6

33.9

Volume² (m³/ha)

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

⁴ Deciduous curve did not converge; total volume was fit and predicted conifer was subtracted from predicted total to obtain deciduous volume. ⁴ Natural stand yield curve will also represent managed stands, therefore managed stand areas are included here.

Mean Annual

Increment³ (m³/ha/year)

0.000

0.000

0.000

0.000

Total

0.000

0.363

0.781

1.132

1.395 1.575 1.681 1.726 2.000 2.190 2.293 2.316 2.270 2.170 2.030 1.865

1.686

1.503 1.323 1.151

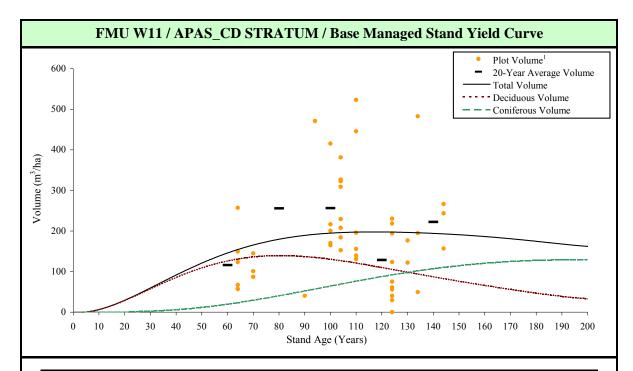
0.992

Conifer Deciduous

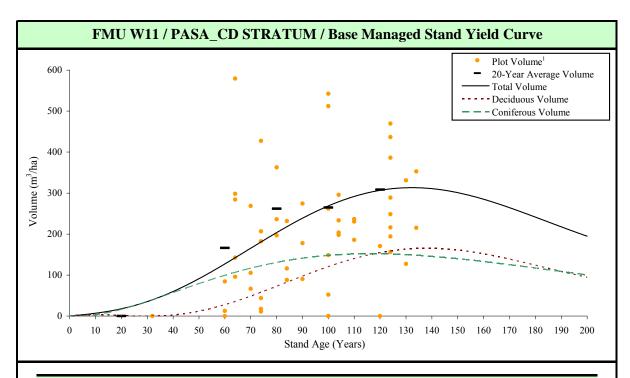
0.000

0.363

0.781


1.132

Appendix X. FMU W11 Base Managed Stand Yield Curves



2-PARAMETER EQUATION (2P): volume = a(age)^be^(-a*age) 2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(-age/k)

Parameter Estimates:			Predicted Gross Stand					Mean Annual		
Coniferous a 7.945E-06		7.945E-06	Stand	Number	Volume ² (m ³ /ha)			Increment ³ (m ³ /ha/year)		
Eqn: 2P+k	b	3.8885273	Age	of Plots	Conifer	Deciduous	Total	Conifer	Deciduous	Tota
	k	50	0		0.0	0.0	0.0	0.000	0.000	0.000
Deciduous	а	3.094E-02	10		0.1	6.9	7.0	0.005	0.692	0.69′
Eqn: 2P	b	2.4841849	20		0.6	28.4	29.0	0.031	1.422	1.452
	k	0	30		2.4	57.1	59.5	0.081	1.904	1.98
			40		6.1	85.7	91.7	0.151	2.142	2.29
Utilization Sta	andards	:	50		11.8	109.4	121.3	0.236	2.189	2.42
Top Diameter	(cm):	10.0	60	6	19.6	126.3	146.0	0.327	2.106	2.43
Stump Diamet	er (cm):	15.0	70	3	29.3	136.0	165.3	0.418	1.942	2.36
Stump Height-	All (cm)	: 30.0	80		40.3	139.0	179.3	0.504	1.738	2.24
Minimum Log	Length	(m): 4.88	90	2	52.2	136.7	188.9	0.580	1.519	2.09
			100	13	64.3	130.3	194.7	0.643	1.303	1.94
Stratum Sum	mary:		110	6	76.3	121.2	197.5	0.694	1.102	1.79
Total Number	of Plots:	49	120	11	87.6	110.4	198.1	0.730	0.920	1.65
Stratum Area ((ha) :	1,892	130	5	98.0	98.9	196.8	0.754	0.760	1.51
			140	3	107.0	87.2	194.2	0.764	0.623	1.38
			150		114.5	76.0	190.5	0.764	0.506	1.27
Stratum as a j	proporti	ion of total	160		120.5	65.4	186.0	0.753	0.409	1.16
managed landbase, FMU W11:		170		124.9	55.8	180.8	0.735	0.328	1.06	
		180		127.7	47.2	175.0	0.710	0.262	0.97	
		190		129.0	39.6	168.7	0.679	0.209	0.88	
		200		129.0	33.0	162.0	0.645	0.165	0.81	

 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION (2P): volume = a(age)^be^(-a*age) 2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(-age/k)

Parameter Estimates:					
Coniferous	а	2.036E-02			
Eqn: 2P	b	2.3729132			
	k	0			
Deciduous	а	3.546E-10			
Eqn: $2P+k$	b	6.8528557			
	k	20			

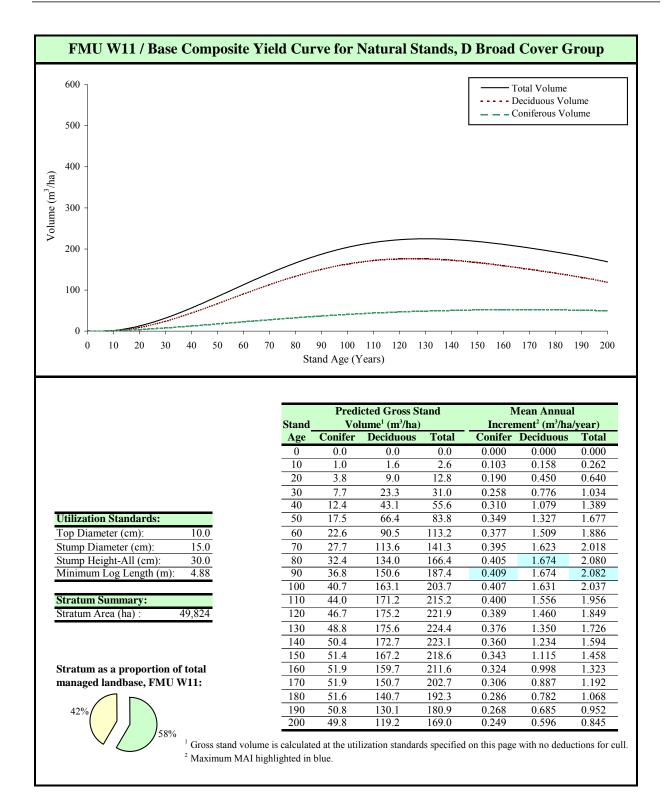
10.0
10.0
15.0
30.0
4.88

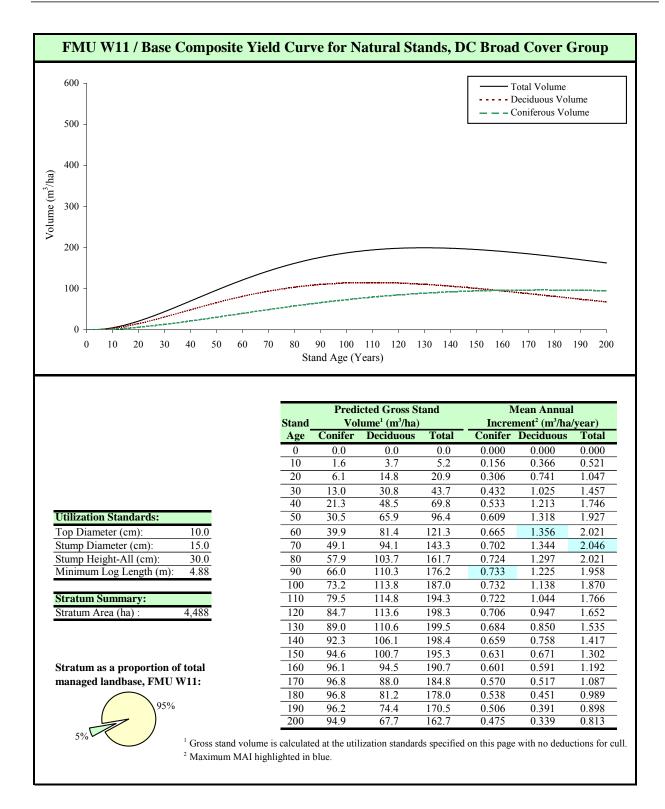
Stratum Summary:	
Total Number of Plots:	59
Stratum Area (ha) :	1,594

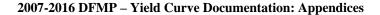
Stratum as a proportion of total managed landbase, FMU W11:

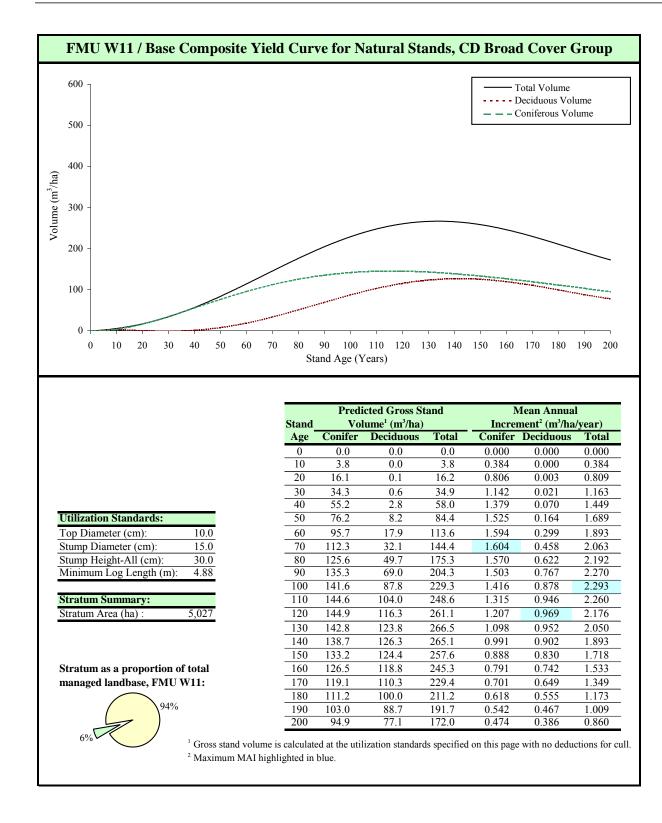
Predicted Gross Stand					Mean Annual			
Stand	Number	Volume ² (m ³ /ha)			Increment ³ (m ³ /ha/year)			
Age	of Plots	Conifer	Deciduous	Total	Conifer	Deciduous	Total	
0		0.0	0.0	0.0	0.000	0.000	0.000	
10		3.9	0.0	3.9	0.392	0.000	0.392	
20		16.6	0.1	16.7	0.828	0.005	0.834	
30	1	35.4	1.0	36.4	1.179	0.035	1.214	
40		57.1	4.6	61.7	1.427	0.114	1.542	
50		79.1	12.8	91.9	1.582	0.256	1.838	
60	8	99.5	27.1	126.5	1.658	0.451	2.109	
70	9	117.0	47.2	164.2	1.671	0.674	2.345	
80	7	131.0	71.5	202.5	1.638	0.893	2.531	
90	3	141.3	97.2	238.5	1.570	1.080	2.650	
100	12	148.0	121.3	269.4	1.480	1.213	2.694	
110	3	151.4	141.4	292.8	1.377	1.285	2.662	
120	10	151.9	155.7	307.6	1.266	1.297	2.563	
130	6	149.8	163.4	313.2	1.152	1.257	2.409	
140		145.7	164.7	310.4	1.041	1.177	2.217	
150		140.0	160.3	300.3	0.933	1.069	2.002	
160		133.1	151.3	284.4	0.832	0.946	1.778	
170		125.4	139.0	264.4	0.738	0.818	1.556	
180		117.2	124.8	241.9	0.651	0.693	1.344	
190		108.7	109.6	218.3	0.572	0.577	1.149	
200		100.1	94.5	194.6	0.501	0.472	0.973	

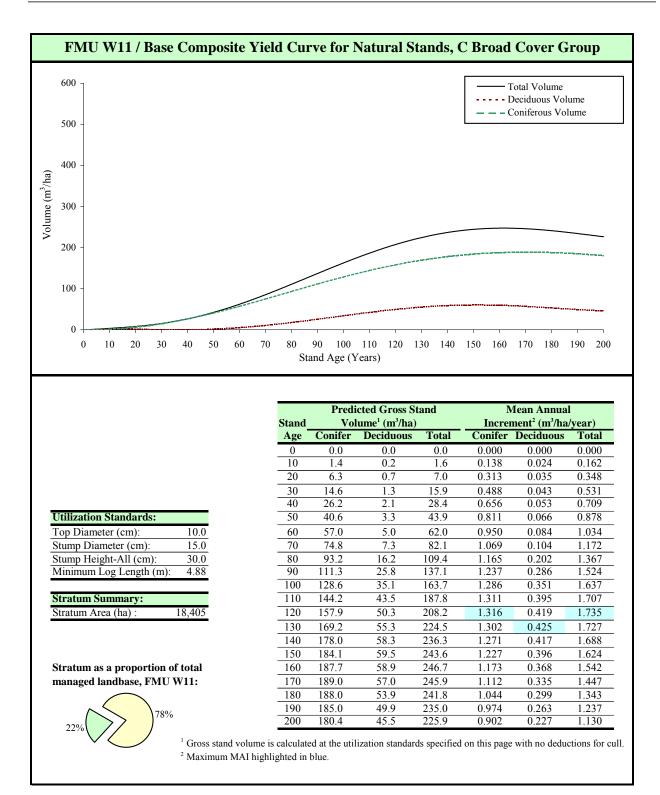
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

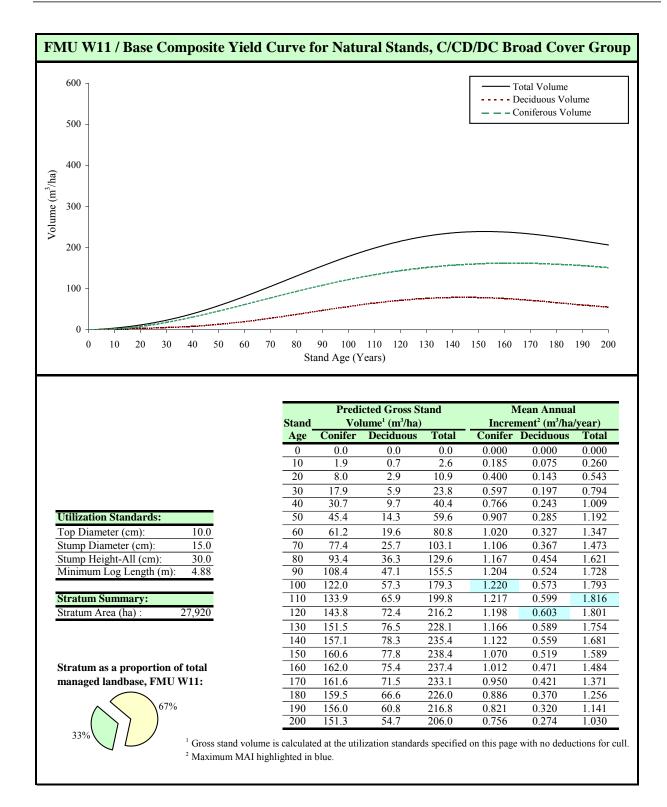

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue.

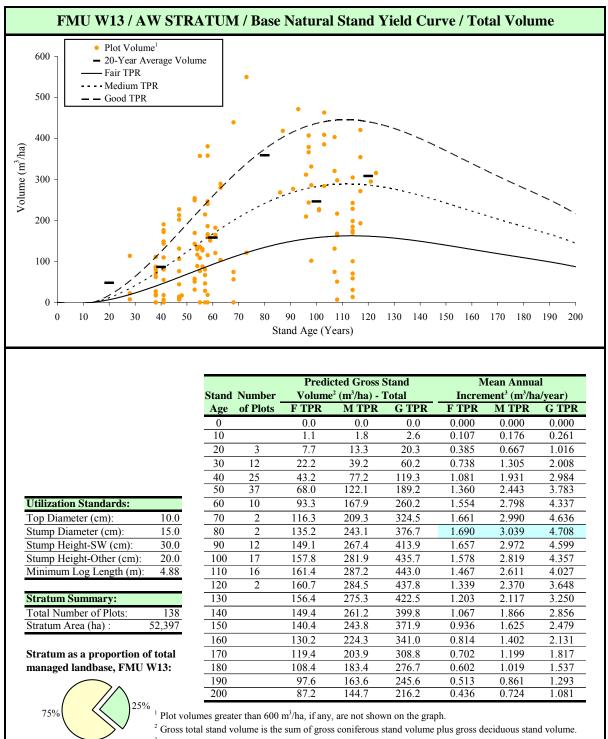



Appendix XI. FMU W11 Base Composite Yield Curves

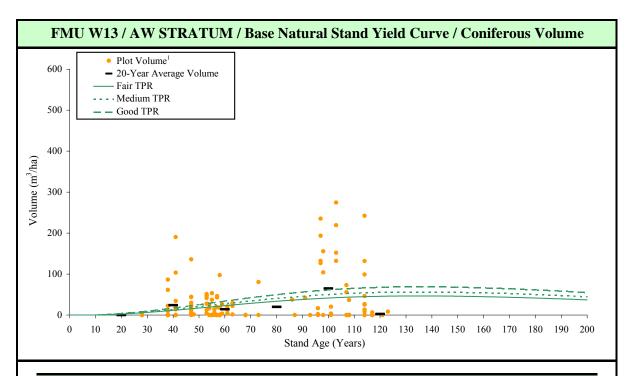




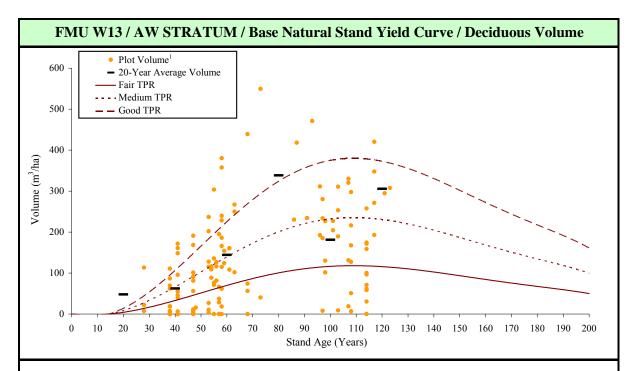




Appendix XII. FMU W13 Base Natural Stand Yield Curves


AW Stratum Base Natural Stand Yield Curves

³ Maximum MAI highlighted in blue.



Inputs: Parameter Values a ₀ -2.337E-0	4 Stand Nun		Predicted Gross Stand Volume ² (m ³ /ha) - Conifer			Mean Annual Increment ³ (m³/ha/year)		
Eqn: $2P+k$ a_1 1.086E-0	Age of P	lots F TPR	M TPR	G TPR	F TPR	M TPR	G TPR	
b 2.720268	3 0	0.0	0.0	0.0	0.000	0.000	0.000	
k 5	0 10	0.5	0.6	0.7	0.048	0.058	0.071	
Site Index Inputs F 12.	4 20 3	3 2.6	3.1	3.8	0.129	0.156	0.191	
M 14.	5 30 12	2 6.4	7.7	9.4	0.212	0.256	0.314	
G 17.	3 40 25	5 11.4	13.8	16.8	0.285	0.344	0.421	
	50 31	7 17.1	20.7	25.3	0.343	0.414	0.506	
Utilization Standards:	60 10) 23.0	27.8	34.0	0.384	0.463	0.567	
Top Diameter (cm): 10.	0 70 2	2 28.7	34.6	42.4	0.410	0.495	0.605	
Stump Diameter (cm): 15.	0 80 2	2 33.8	40.8	49.9	0.422	0.509	0.623	
Stump Height-SW (cm): 30.	0 90 12	2 38.1	46.0	56.3	0.423	0.511	0.625	
Stump Height-Other (cm): 20.	0 100 17	7 41.5	50.1	61.4	0.415	0.501	0.614	
Minimum Log Length (m): 4.8	8 110 10	6 44.1	53.2	65.1	0.401	0.484	0.592	
	120 2	2 45.7	55.2	67.5	0.381	0.460	0.563	
Stratum Summary:	130	46.6	56.2	68.7	0.358	0.432	0.529	
Total Number of Plots: 13	8 140	46.6	56.3	68.8	0.333	0.402	0.492	
Stratum Area (ha) : 52,39	7 150	46.1	55.6	68.0	0.307	0.370	0.453	
	160	44.9	54.2	66.4	0.281	0.339	0.415	
Stratum as a proportion of total	170	43.4	52.4	64.1	0.255	0.308	0.377	
managed landbase, FMU W13:	180	41.5	50.1	61.3	0.231	0.278	0.340	
	190	39.4	47.5	58.1	0.207	0.250	0.306	
	200	37.1	44.7	54.7	0.185	0.224	0.274	

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

Inputs:	_		Pre	dicted Gro	ss Stand		Mean Annı	19]
^	2E-03 Sta	nd Numb	oer Volume				ment ³ (m ³ /l	
		ge of Plo		× /			M TPR	G TP
b 3.59	63795)	0.0	0.0	0.0	0.000	0.000	0.000
k	30 1	0	0.6	1.2	1.9	0.059	0.118	0.190
Site Index Inputs F	14.9 2	0 3	5.1	10.2	16.5	0.256	0.511	0.825
M	17.4 3	0 12	15.8	31.5	50.8	0.526	1.049	1.694
G	20.5 4	0 25	31.8	63.5	102.5	0.795	1.587	2.562
	5	0 37	50.9	101.5	163.9	1.017	2.029	3.277
Utilization Standards:	6	0 10	70.2	140.1	226.2	1.170	2.334	3.770
Top Diameter (cm):	10.0 7	0 2	87.6	174.7	282.1	1.251	2.496	4.031
Stump Diameter (cm):	15.0 8	0 2	101.4	202.4	326.8	1.268	2.530	4.085
Stump Height-SW (cm):	30.0 9	0 12	111.0	221.5	357.7	1.234	2.461	3.974
Stump Height-Other (cm):	20.0 1	00 17	116.2	231.8	374.3	1.162	2.318	3.743
Minimum Log Length (m):	4.88 1	10 16	117.3	234.0	377.9	1.066	2.127	3.435
	12	20 2	114.9	229.3	370.3	0.958	1.911	3.085
Stratum Summary:	1.	30	109.8	219.1	353.8	0.845	1.685	2.722
Total Number of Plots:	138 14	40	102.7	204.9	330.9	0.734	1.464	2.364
Stratum Area (ha) : 5	52,397 1:	50	94.3	188.2	303.9	0.629	1.255	2.026
	1	50	85.3	170.1	274.6	0.533	1.063	1.717
Stratum as a proportion of	total 1'	70	76.0	151.5	244.7	0.447	0.891	1.440
managed landbase, FMU W	V13: 1	30	66.9	133.4	215.4	0.371	0.741	1.197
	1	9 0	58.2	116.1	187.4	0.306	0.611	0.987

200

5% ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

50.1

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

161.5

100.0

0.251

0.500

G TPR

0.000

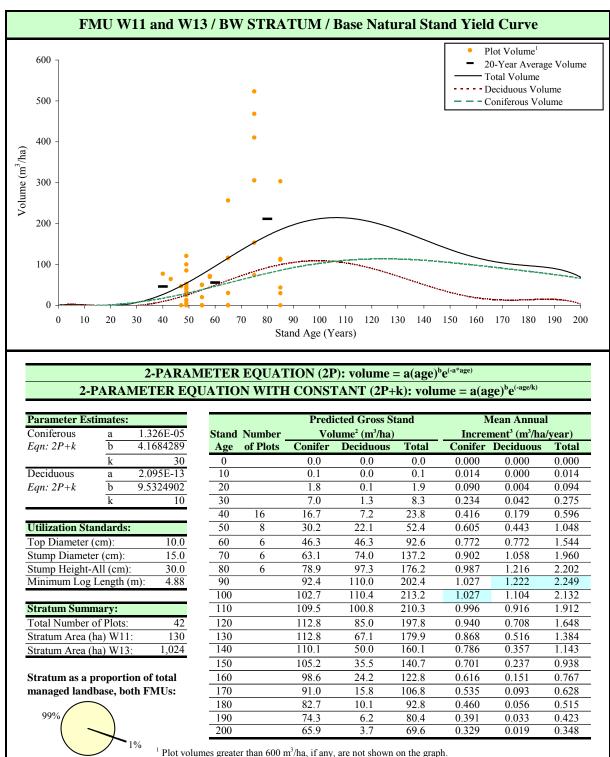
2.562 3.277

3.770

3.974

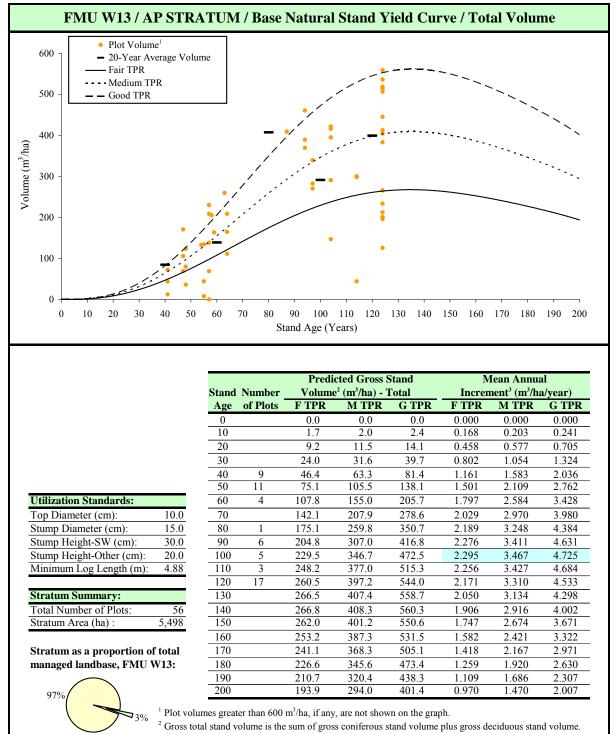
2.364

1.197


0.987

0.808

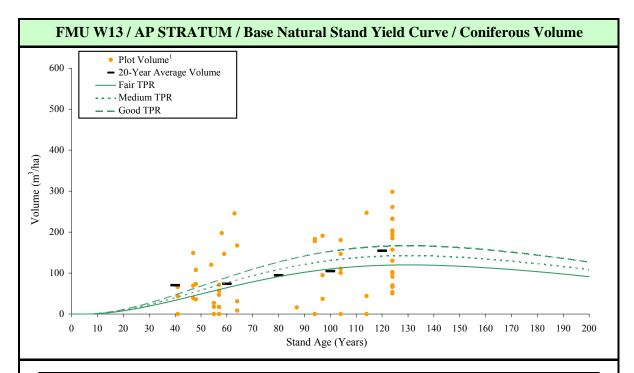
BW Stratum Base Natural Stand Yield Curves



AP Stratum Base Natural Stand Yield Curves

³ Maximum MAI highlighted in blue.

-

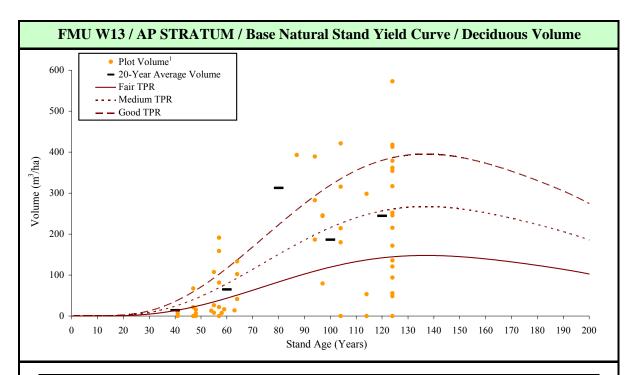

1

year) G TPR 0.000 0.224 0.563 0.887 1.156 1.357 1.491 1.566 1.591 1.575 1.529 1.460 1.376

1.282 1.183

1.083 0.984 0.888

0.798 0.713 0.634



2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = $(a_0+a_1*SI)(age)^b e^{(-age/k)}$

Inputs:					Predic	cted Gross S	Stand	N	lean Annu	al
Parameter Values	a	-8.797E-04	Stand	Number		$(m^{3}/ha) - C_{0}$			nent ³ (m ³ /h	
Eqn: $2P+k$	$\frac{a_0}{a_1}$	3.984E-04	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	(u
	b	2.6149329	0		0.0	0.0	0.0	0.000	0.000	
	k	50	10		1.6	1.9	2.2	0.161	0.192	
Site Index Inputs	F	14.2	20		8.1	9.6	11.3	0.405	0.481	
	М	16.5	30		19.1	22.8	26.6	0.638	0.758	
	G	18.9	40	9	33.3	39.5	46.2	0.831	0.988	
			50	11	48.8	58.0	67.8	0.976	1.160	
Utilization Stand	lards	:	60	4	64.4	76.5	89.5	1.073	1.275	
Top Diameter (cm	ı):	10.0	70		78.9	93.7	109.6	1.126	1.339	
Stump Diameter (cm):	15.0	80	1	91.5	108.8	127.3	1.144	1.360	
Stump Height-SW	/ (cm): 30.0	90	6	102.0	121.2	141.8	1.133	1.347	
Stump Height-Oth	ner (c	m): 20.0	100	5	110.0	130.7	152.9	1.100	1.307	
Minimum Log Le	ngth	(m): 4.88	110	3	115.5	137.3	160.6	1.050	1.248	
			120	17	118.7	141.1	165.1	0.990	1.176	
Stratum Summa	ry:		130		119.9	142.5	166.6	0.922	1.096	
Total Number of	Plots	56	140		119.1	141.6	165.6	0.851	1.011	
Stratum Area (ha)	:	5,498	150		116.8	138.8	162.4	0.779	0.926	
			160		113.2	134.6	157.4	0.708	0.841	
Stratum as a pro	port	ion of total	170		108.6	129.1	151.0	0.639	0.759	
managed landba	se, F	MU W11:	180		103.3	122.7	143.6	0.574	0.682	
\frown			190		97.4	115.7	135.4	0.513	0.609	
97%			200		91.2	108.4	126.8	0.456	0.542	

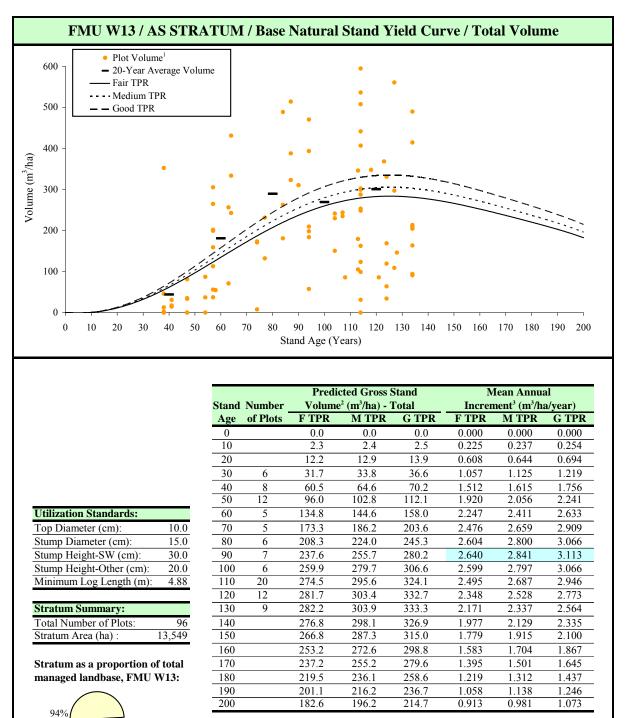
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

Inputs:		
Parameter Values	a_0	-9.132E-06
Eqn: $2P+k$	a_1	7.658E-07
	b	4.5904144
	k	30
Site Index Inputs	F	14.8
	М	17.1
	G	19.6

Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-SW (cm):	30.0
Stump Height-Other (cm):	20.0
Minimum Log Length (m):	4.88

Stratum Summary:	
Total Number of Plots:	56
Stratum Area (ha) :	5,498

Stratum as a proportion of total managed landbase, FMU W13:


Predicted Gross Stand Mean Annual Volume² (m³/ha) - Deciduous Increment³ (m³/ha/year) Stand Number of Plots F TPR M TPR **G** TPR F TPR M TPR G TPR Age 0 0.0 0.0 0.0 0.000 0.000 0.000 0.011 10 0.1 0.1 0.2 0.006 0.016 20 1.1 1.9 2.8 0.053 0.096 0.142 30 4.9 8.9 13.1 0.164 0.295 0.437 0 0.595 40 13.2 23.8 35.2 0.329 0.880 70.2 50 11 26.3 47.5 0.525 0.949 1.405 0.725 43.5 78.5 116.2 1.309 1.937 60 4 70 63.2 114.2 169.0 0.903 1.631 2.414 223.5 2.794 80 83.6 151.0 1.045 1.888 1 90 102.9 185.8 275.0 1.143 2.065 3.055 6 100 119.5 215.9 319.6 1.195 2.159 5 3.196 2.179 239.7 1.206 3.224 110 3 132.7 354.7 256.0 2.134 120 17 141.7 378.9 1.181 3.158 2.038 130 146.7 264.9 392.0 1.128 3.016 140 147.7 394.7 1.905 266.7 1.055 2.820 150 145.2 262.3 388.2 0.968 1.749 2.588 160 139.9 252.8 374.1 0.875 1.580 2.338 132.4 239.2 354.1 0.779 1.407 2.083 170 180 123.4 222.9 329.8 0.685 1.238 1.832 190 113.3 204.7 302.9 0.596 1.077 1.594 200 102.7 185.6 274.7 0.514 0.928 1.373

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

AS Stratum Base Natural Stand Yield Curves

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

6%

² Gross total stand volume is the sum of gross coniferous stand volume plus gross deciduous stand volume.
³ Maximum MAI highlighted in blue.

Mean Annual

Increment³ (m³/ha/year)

M TPR

0.000

0.216

0.505

0.763

0.966

1.108

1.195

1.235

1.237

1.211

1.162

1.099

1.026

0.948

0.869

0.789

0.713

0.639

0.571

0.507

0.449

G TPR

0.000

0.231

0.539

0.814

1.030

1.182

1.275

1.318

1.320

1.291

1.240

1.173

1.095

1.012

0.927

0.842

0.760

0.682

0.609

0.541

0.479

F TPR

0.000

0.206

0.481

0.727

0.920

1.055

1.138

1.176

1.179

1.153

1.107

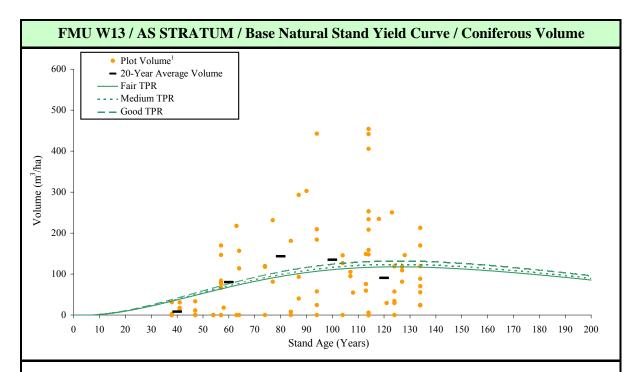
1.047

0.978

0.903

0.827

0.752


0.679

0.609

0.544

0.483

0.427

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)

Inputs:				Predi	cted Gross S	Stand
Parameter Values a ₀	5.490E-03	Stand	Number	Volume ²	(m ³ /ha) - Co	onifer
Eqn: $2P+k$ $\overline{a_1}$	1.888E-04	Age	of Plots	F TPR	M TPR	GI
b	2.5120370	0		0.0	0.0	0
k	50	10		2.1	2.2	2
Site Index Inputs F	11.9	20		9.6	10.1	10
М	14.0	30	6	21.8	22.9	24
G	16.8	40	8	36.8	38.6	41
		50	12	52.8	55.4	59
Utilization Standards	5:	60	5	68.3	71.7	76
Top Diameter (cm):	10.0	70	5	82.3	86.5	92
Stump Diameter (cm):	15.0	80	6	94.3	99.0	105
Stump Height-SW (cm	n): 30.0	90	7	103.8	109.0	116
Stump Height-Other (o	cm): 20.0	100	6	110.7	116.2	124
Minimum Log Length	(m): 4.88	110	20	115.2	120.9	129
		120	12	117.3	123.2	131
Stratum Summary:		130	9	117.4	123.3	131
Fotal Number of Plots	: 96	140		115.8	121.6	129

150

160

170

180

190

200

13,549

Stratum as a proportion of total managed landbase, FMU W13:

Stratum Area (ha) :

94% 6%

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

112.8

108.6

103.5

97.9

91.8

85.5

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

118.4

114.0

108.7

102.7

96.3

89.7

G TPR

0.0

2.3

10.8

24.4

41.2

59.1

76.5

92.2

105.6

116.2

124.0

129.0

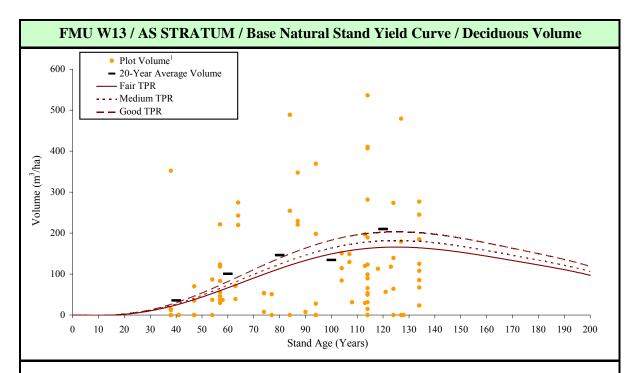
131.4

131.5

129.7

126.3

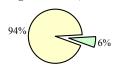
121.6


116.0

109.6

102.8

95.7

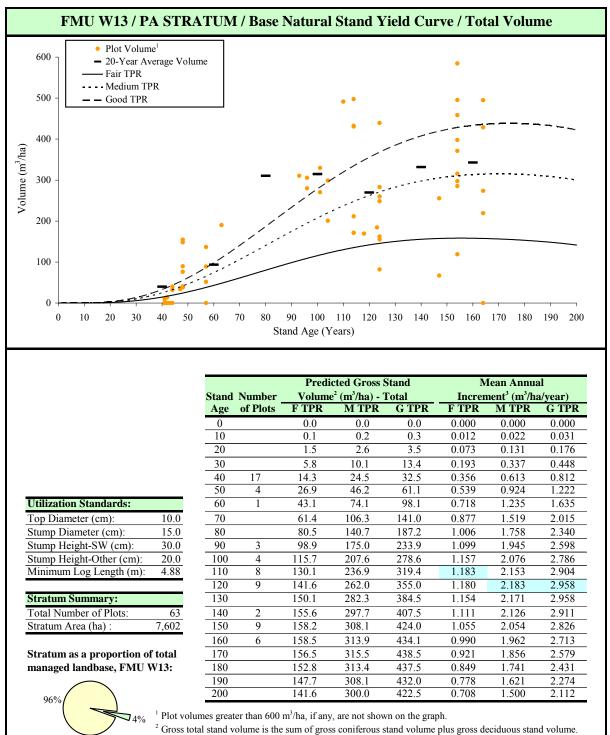


Inputs:		
Parameter Values	a_0	7.434E-06
Eqn: $2P+k$	a_1	6.838E-07
	b	4.1901250
	k	30
Site Index Inputs	F	14.6
	М	17.1
	G	20.3

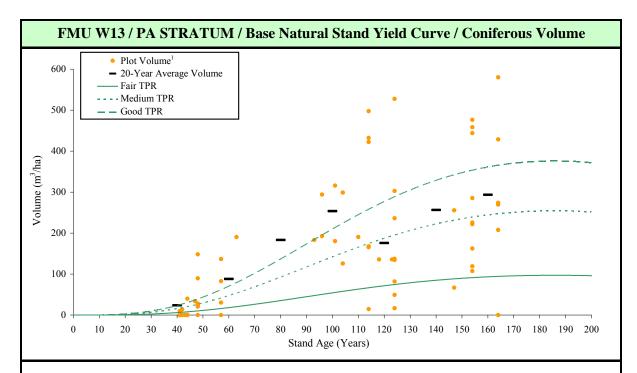
Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-SW (cm):	30.0
Stump Height-Other (cm):	20.0
Minimum Log Length (m):	4.88

Stratum Summary:	
Total Number of Plots:	96
Stratum Area (ha) :	13,549

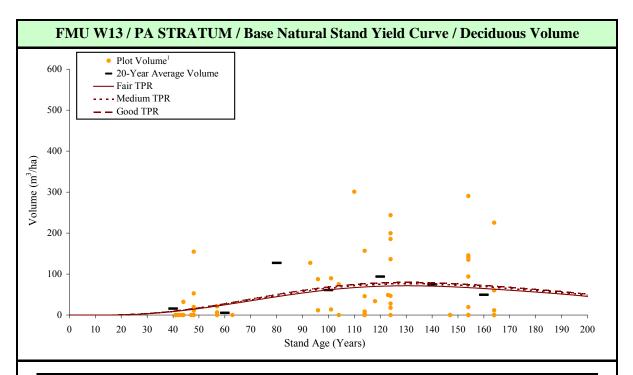
Stratum as a proportion of total managed landbase, FMU W13:


Predicted Gross Stand Mean Annual Stand Number Volume² (m³/ha) - Deciduous Increment³ (m³/ha/year) M TPR of Plots F TPR G TPR F TPR M TPR G TPR Age 0 0.0 0.0 0.0 0.000 0.000 0.000 10 0.2 0.2 0.2 0.019 0.021 0.024 20 2.5 2.8 3.1 0.126 0.139 0.155 30 9.9 10.9 12.1 0.330 0.362 6 0.405 23.7 40 8 26.0 29.0 0.593 0.650 0.726 50 12 43.3 47.4 53.0 0.865 0.948 1.060 66.5 72.9 81.5 1.109 1.216 1.358 60 5 70 91.0 99.7 1.591 5 111.4 1.299 1.424 114.0 80 125.0 139.7 1.426 1.563 1.746 6 90 133.9 146.7 163.9 1.487 1.630 1.821 7 100 149.2 163.5 182.7 1.492 1.635 6 1.827 1.448 110 20 159.3 174.7 195.1 1.588 1.774 120 12 164.4 180.2 201.3 1.370 1.502 1.678 130 9 164.7 180.6 201.7 1.267 1.389 1.552 176.5 197.2 1.261 140 161.0 1.150 1.408 150 154.0 168.9 188.6 1.027 1.126 1.258 160 144.7 158.6 177.1 0.904 0.991 1.107 133.6 0.786 0.862 170 146.5 163.6 0.963 180 121.7 133.4 149.0 0.676 0.741 0.828 190 109.3 119.8 133.9 0.575 0.631 0.705 200 97.1 106.5 118.9 0.486 0.532 0.595

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.


PA Stratum Base Natural Stand Yield Curves

³ Maximum MAI highlighted in blue.


Inputs: Parameter Values a ₀ -5.824E-05	Stand Number		cted Gross S (m³/ha) - C			lean Annua nent ³ (m ³ /ha	
<i>Eqn:</i> $2P+k$ a ₁ 6.806E-06	Age of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 3.7090117	0	0.0	0.0	0.0	0.000	0.000	0.000
k 50	10	0.1	0.2	0.2	0.006	0.017	0.025
Site Index Inputs F 10.8	20	0.7	1.8	2.7	0.034	0.090	0.133
M 14.5	30	2.5	6.6	9.8	0.084	0.221	0.326
G 17.3	40 17	6.0	15.8	23.3	0.150	0.394	0.583
	50 4	11.3	29.5	43.7	0.225	0.591	0.873
Utilization Standards:	60 1	18.2	47.6	70.3	0.303	0.793	1.171
Top Diameter (cm): 10.0	70	26.3	69.0	101.9	0.376	0.985	1.456
Stump Diameter (cm): 15.0	80	35.4	92.7	136.9	0.442	1.158	1.712
Stump Height-SW (cm): 30.0	90 3	44.8	117.4	173.5	0.498	1.305	1.928
Stump Height-Other (cm): 20.0	100 4	54.2	142.1	210.0	0.542	1.421	2.100
Minimum Log Length (m): 4.88	110 8	63.2	165.7	244.8	0.575	1.506	2.226
	120 9	71.5	187.3	276.8	0.596	1.561	2.307
Stratum Summary:	130	78.8	206.4	305.0	0.606	1.587	2.346
Total Number of Plots: 63	140 2	84.9	222.4	328.7	0.606	1.589	2.348
Stratum Area (ha) : 7,602	150 9	89.8	235.2	347.6	0.598	1.568	2.317
	160 6	93.4	244.6	361.5	0.584	1.529	2.260
Stratum as a proportion of total	170	95.7	250.8	370.6	0.563	1.475	2.180
managed landbase, FMU W13:	180	96.9	253.8	375.1	0.538	1.410	2.084
\frown	190	96.9	254.0	375.3	0.510	1.337	1.975
96%	200	96.0	251.5	371.7	0.480	1.257	1.858

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

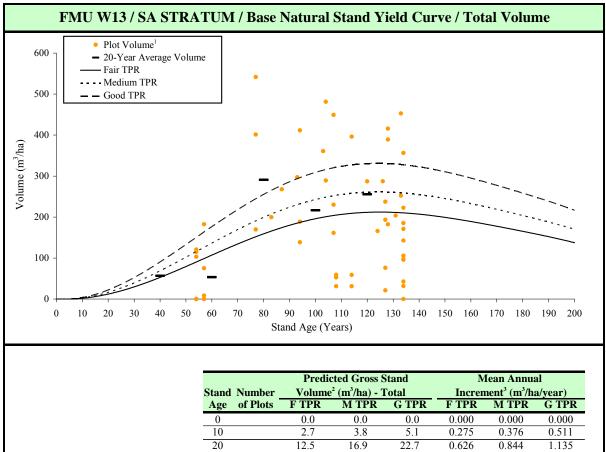
₹4%

Inputs:		
Parameter Values	a_0	2.443E-06
Eqn: 2P+k	a_1	5.372E-08
	b	4.3768354
	k	30
Site Index Inputs	F	11.1
	М	14.7
	G	17.6

Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-SW (cm):	30.0
Stump Height-Other (cm):	20.0
Minimum Log Length (m):	4.88

Stratum Summary:	
Total Number of Plots:	63
Stratum Area (ha) :	7,602

Stratum as a proportion of total managed landbase, FMU W13:


Predicted Gross Stand Mean Annual Stand Number Volume² (m³/ha) - Deciduous Increment³ (m³/ha/year) of Plots F TPR M TPR **G** TPR F TPR M TPR G TPR Age 0 0.0 0.0 0.0 0.000 0.000 0.000 10 0.1 0.1 0.1 0.005 0.006 0.006 20 0.8 0.8 0.9 0.039 0.041 0.043 30 3.3 3.5 3.6 0.109 0.116 0.121 40 17 8.2 8.8 9.2 0.206 0.219 0.230 50 15.7 16.7 17.5 0.313 0.334 0.349 4 26.5 0.463 60 24.9 0.416 0.442 1 27.8 70 37.4 0.534 35.1 39.1 0.501 0.559 48.0 0.629 80 45.1 50.3 0.564 0.600 90 54.1 57.6 60.3 0.601 0.640 0.670 3 100 65.5 0.615 0.655 4 61.5 68.6 0.686 110 8 66.8 71.2 74.6 0.608 0.647 0.678 0.584 120 9 70.1 74.7 78.2 0.622 0.651 75.9 79.5 130 71.3 0.548 0.584 0.612 0.538 2 70.7 753 78.8 0.505 140 0.563 150 9 68.5 72.9 76.4 0.457 0.486 0.509 160 6 65.1 69.3 72.6 0.407 0.433 0.454 67.8 0.358 0.381 0.399 170 60.8 64.8 180 56.0 59.6 62.4 0.311 0.331 0.347 190 50.8 54.1 56.7 0.267 0.285 0.298 200 45.6 48.5 0.228 0.243 0.254 50.8

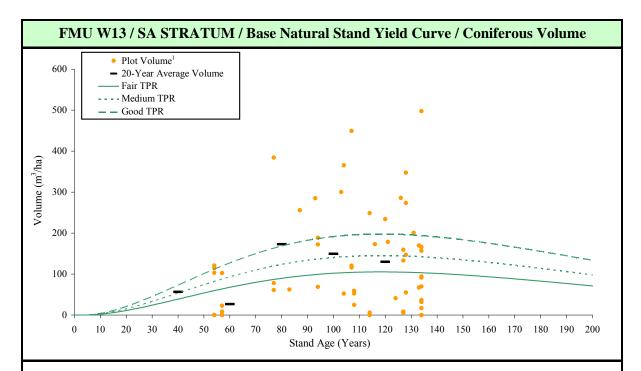
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

SA Stratum Base Natural Stand Yield Curves

Utilization Standards:	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.
Stump Height-SW (cm):	30.
Stump Height-Other (cm):	20.
Minimum Log Length (m):	4.8

Stratum Summary:	
Total Number of Plots:	60
Stratum Area (ha) :	10,207

Stratum as a proportion of total managed landbase, FMU W13:


30 29.4 38.9 51.8 0.979 1.296 1.725 40 52.1 68.0 89.5 1.303 1.699 2.238 78.9 1.578 2.647 50 11 101.4 132.4 2.028 60 107.2 136.3 176.6 1.787 2.272 2.943 70 3 134.8 169.9 218.7 1.926 2.427 3.125 159.7 199.8 1.996 2.497 80 2 256.0 3.200 90 4 180.3 224.4 286.4 2.004 2.493 3.182 100 9 195.9 242.8 309.0 1.959 2.428 3.090 254.6 2.940 206.1 1.874 2.315 110 4 323.4 329.9 120 12 211.0 260.2 1.759 2.168 2.749 130 15 211.1 260.0 329.3 1.624 2.000 2.533 140 207.1 254.9 1.479 1.821 322.7 2.305 150 199.7 245.8 311.2 1.331 1.638 2.074 160 189.7 233.6 295.8 1.186 1.460 1.849 170 177.9 219.2 277.8 1.046 1.289 1.634 258.1 180 164.9 203.4 0.916 1.130 1.434 151.3 237.4 0.796 190 1.250 187.0 0.984 200 137.6 170.3 216.6 0.688 0.852 1.083

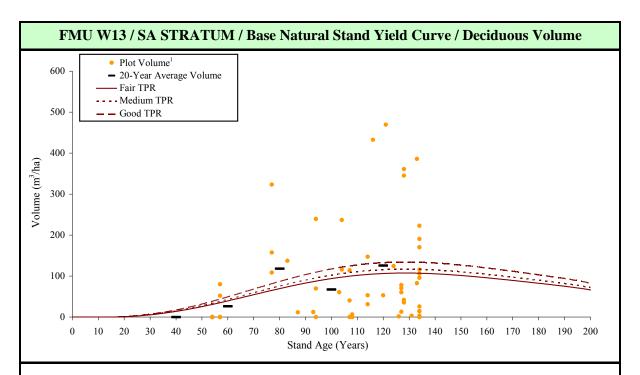
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

² Gross total stand volume is the sum of gross coniferous stand volume plus gross deciduous stand volume.
³ Maximum MAI highlighted in blue.

•

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)

Innuta					Duadi	ted Gross S	Stond	N	Iean Annua	1
Inputs: Parameter Valu	00.0	-1.250E-02	Stand	Number		(m ³ /ha) - C			nent ³ (m ³ /h	
Eqn: $2P+k$	$\frac{a_0}{a_1}$	2.319E-02	Age	of Plots	F TPR	(III /IIa) - Co M TPR	G TPR	F TPR	M TPR	G TPR
Lqn. 21 $\pm \kappa$		2.3658988	0	01 1 1013	0.0	0.0	0.0	0.000	0.000	0.000
	b k	2.3038988	10		2.7	3.7	5.0	0.000	0.000	0.000
Site Index Inpu		11.4	20		11.2	15.4	21.1	0.260	0.300	1.053
Site muex inpu	-									
	M	13.7	30		24.0	33.0	45.0	0.799	1.100	1.500
	G	16.7	40		38.7	53.4	72.8	0.969	1.334	1.819
			50	11	53.8	74.1	101.0	1.076	1.482	2.020
Utilization Sta	ndard	s:	60		67.8	93.4	127.3	1.130	1.556	2.121
Top Diameter (cm):	10.0	70	3	79.9	110.1	150.1	1.142	1.573	2.144
Stump Diamete	r (cm)	15.0	80	2	89.7	123.6	168.5	1.122	1.545	2.107
Stump Height-S	SW (cn	n): 30.0	90	4	97.1	133.7	182.3	1.079	1.486	2.026
Stump Height-O	Other (cm): 20.0	100	9	102.0	140.5	191.5	1.020	1.405	1.915
Minimum Log	Length	(m): 4.88	110	4	104.6	144.1	196.5	0.951	1.310	1.786
			120	12	105.2	144.9	197.6	0.877	1.208	1.647
Stratum Sumn	nary:		130	15	104.1	143.4	195.5	0.801	1.103	1.504
Total Number of	of Plots	s: 60	140		101.6	139.9	190.8	0.726	0.999	1.363
Stratum Area (l	1a) :	10,207	150		97.9	134.9	183.9	0.653	0.899	1.226
			160		93.4	128.6	175.4	0.584	0.804	1.096
Stratum as a p	ropor	tion of total	170		88.3	121.6	165.7	0.519	0.715	0.975
managed land	base, F	MU W13:	180		82.7	113.9	155.3	0.460	0.633	0.863
			190		77.0	106.0	144.5	0.405	0.558	0.761
95%			200		71.1	98.0	133.6	0.356	0.490	0.668
-										

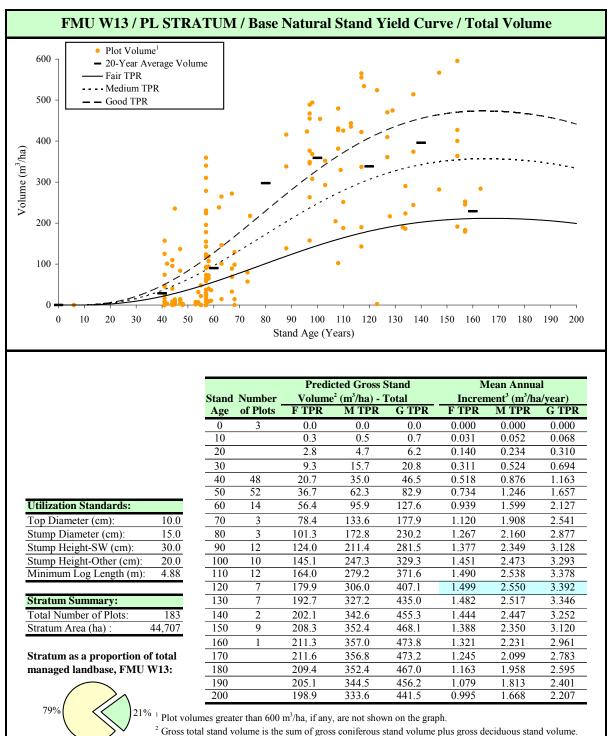

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

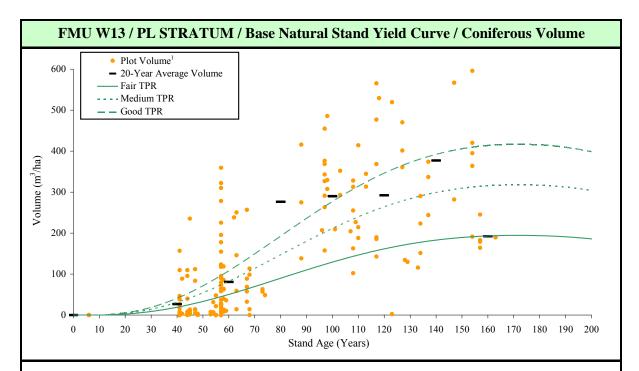
5%

•

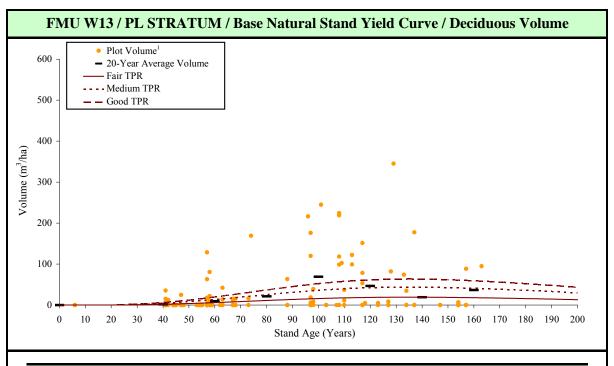
2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)


Inputs:					Predi	cted Gross S	Stand	N	lean Annua	al
Parameter Values	a	2.365E-06	Stand	Number		m ³ /ha) - Dec			nent ³ (m ³ /h	
Eqn: $2P+k$	a ₁	2.873E-07	Age	of Plots	F TPR	M TPR	G TPR	FTPR	M TPR	G TPR
•	b	4.3087260	0		0.0	0.0	0.0	0.000	0.000	0.000
	k	30	10		0.1	0.1	0.1	0.009	0.010	0.012
Site Index Inputs	F	13.9	20		1.3	1.4	1.6	0.066	0.072	0.082
	М	15.9	30		5.4	5.9	6.8	0.180	0.196	0.225
	G	19.4	40		13.4	14.6	16.7	0.335	0.365	0.419
			50	11	25.1	27.3	31.4	0.502	0.547	0.628
Utilization Stand	lards	:	60		39.4	43.0	49.3	0.657	0.716	0.822
Top Diameter (cn	1):	10.0	70	3	54.9	59.8	68.7	0.784	0.855	0.981
Stump Diameter (cm):	15.0	80	2	70.0	76.2	87.5	0.874	0.952	1.093
Stump Height-SW	/ (cm	a): 30.0	90	4	83.3	90.7	104.1	0.925	1.008	1.157
Stump Height-Oth	ner (c	m): 20.0	100	9	93.9	102.3	117.4	0.939	1.023	1.174
Minimum Log Le	ngth	(m): 4.88	110	4	101.5	110.5	126.9	0.923	1.005	1.154
			120	12	105.8	115.2	132.3	0.882	0.960	1.102
Stratum Summa	ry:		130	15	107.0	116.6	133.8	0.823	0.897	1.029
Total Number of	Plots	: 60	140		105.5	115.0	132.0	0.754	0.821	0.943
Stratum Area (ha)	:	10,207	150		101.8	110.9	127.3	0.679	0.739	0.849
			160		96.3	104.9	120.4	0.602	0.656	0.753
Stratum as a pro	port	ion of total	170		89.6	97.6	112.1	0.527	0.574	0.659
managed landba	se, F	MU W13:	180		82.1	89.5	102.7	0.456	0.497	0.571
			190		74.3	80.9	92.9	0.391	0.426	0.489
95%			200		66.4	72.3	83.0	0.332	0.362	0.415
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,										

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.]5%


PL Stratum Base Natural Stand Yield Curves

³ Maximum MAI highlighted in blue.

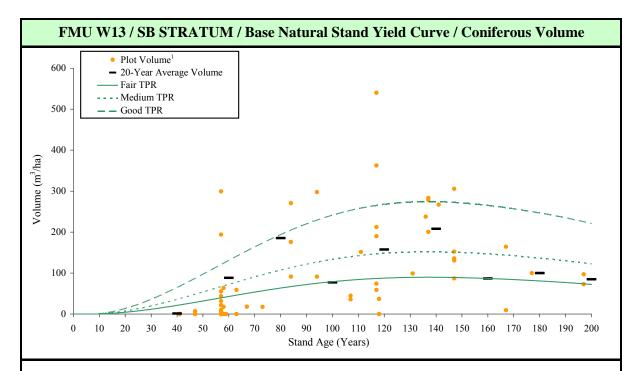


Inputs: Parameter Values a ₀ -1.456E-04		Stand	Number		cted Gross S (m³/ha) - Co		Mean Annual Increment ³ (m ³ /ha/year)			
Eqn: $2P+k$	$\frac{a_0}{a_1}$	2.666E-05	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
	b	3.4097246	0	3	0.0	0.0	0.0	0.000	0.000	0.000
	k	50	10		0.3	0.5	0.7	0.030	0.050	0.065
Site Index Inpu	its F	10.9	20		2.6	4.3	5.7	0.132	0.217	0.284
	М	14.3	30		8.6	14.1	18.5	0.288	0.471	0.617
	G	17.1	40	48	18.9	30.8	40.4	0.472	0.771	1.011
			50	52	33.1	54.1	70.9	0.661	1.081	1.417
Utilization Sta	ndard	s:	60	14	50.4	82.4	108.0	0.840	1.373	1.800
Top Diameter ((cm):	10.0	70	3	69.8	114.1	149.6	0.997	1.630	2.137
Stump Diamete	er (cm):	15.0	80	3	90.1	147.3	193.1	1.126	1.841	2.414
Stump Height-S	SW (cn	n): 30.0	90	12	110.2	180.2	236.2	1.225	2.002	2.625
Stump Height-O	Other (cm): 20.0	100	10	129.2	211.3	277.0	1.292	2.113	2.770
Minimum Log	Length	(m): 4.88	110	12	146.4	239.5	313.9	1.331	2.177	2.854
			120	7	161.3	263.8	345.8	1.344	2.198	2.881
Stratum Sumn	nary:		130	7	173.5	283.7	371.9	1.335	2.182	2.861
Total Number o	of Plots	s: 183	140	2	182.9	299.1	392.1	1.306	2.136	2.800
Stratum Area (l	ha) :	44,707	150	9	189.5	309.8	406.1	1.263	2.065	2.707
			160	1	193.3	316.1	414.3	1.208	1.975	2.590
Stratum as a p	roport	tion of total	170		194.6	318.2	417.1	1.145	1.872	2.454
managed land			180		193.6	316.6	415.0	1.076	1.759	2.306
	<u> </u>		190		190.6	311.7	408.6	1.003	1.640	2.150
		1	200		185.9	303.9	398.4	0.929	1.520	1.992

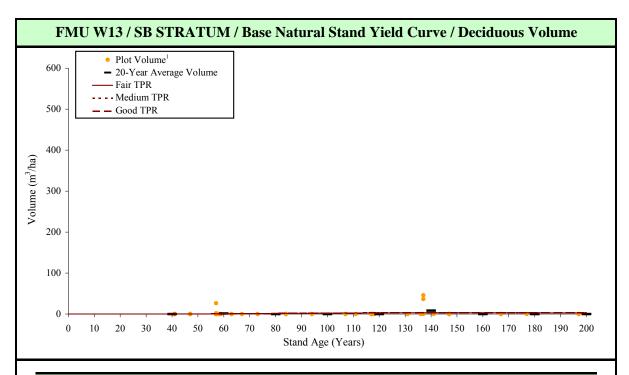
^o ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

Inputs:					cted Gross S			Iean Annua	
	1.189E-06		Number		m³/ha) - Dec			nent ³ (m ³ /ha	• /
Eqn: $2P+k$ a_1 a_1	1.424E-07	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
	.5284879	0	3	0.0	0.0	0.0	0.000	0.000	0.000
k	30	10		0.0	0.0	0.0	0.001	0.002	0.003
Site Index Inputs F	11.1	20		0.2	0.4	0.5	0.008	0.018	0.026
M	14.6	30		0.7	1.6	2.3	0.023	0.053	0.077
G	17.4	40	48	1.8	4.2	6.1	0.046	0.105	0.152
		50	52	3.6	8.3	12.0	0.073	0.165	0.240
Utilization Standards:		60	14	6.0	13.5	19.6	0.099	0.225	0.327
Top Diameter (cm):	10.0	70	3	8.6	19.5	28.3	0.123	0.278	0.404
Stump Diameter (cm):	15.0	80	3	11.3	25.5	37.1	0.141	0.319	0.463
Stump Height-SW (cm):	30.0	90	12	13.7	31.2	45.3	0.153	0.346	0.503
Stump Height-Other (cm)): 20.0	100	10	15.9	36.0	52.3	0.159	0.360	0.523
Minimum Log Length (m	n): 4.88	110	12	17.5	39.7	57.7	0.159	0.361	0.524
		120	7	18.6	42.2	61.3	0.155	0.352	0.511
Stratum Summary:		130	7	19.2	43.5	63.1	0.147	0.334	0.485
Total Number of Plots:	183	140	2	19.2	43.6	63.2	0.137	0.311	0.452
Stratum Area (ha) :	44,707	150	9	18.8	42.7	61.9	0.125	0.284	0.413
		160	1	18.0	40.9	59.4	0.113	0.256	0.372
Stratum as a proportion	1 of total	170		17.0	38.6	56.1	0.100	0.227	0.330
managed landbase, FM	U W13:	180		15.8	35.8	52.0	0.088	0.199	0.289
		190		14.5	32.8	47.6	0.076	0.173	0.251
		200		13.1	29.6	43.0	0.065	0.148	0.215
79%	1%								

⁶ ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.


SB Stratum Base Natural Stand Yield Curves

³ Maximum MAI highlighted in blue.

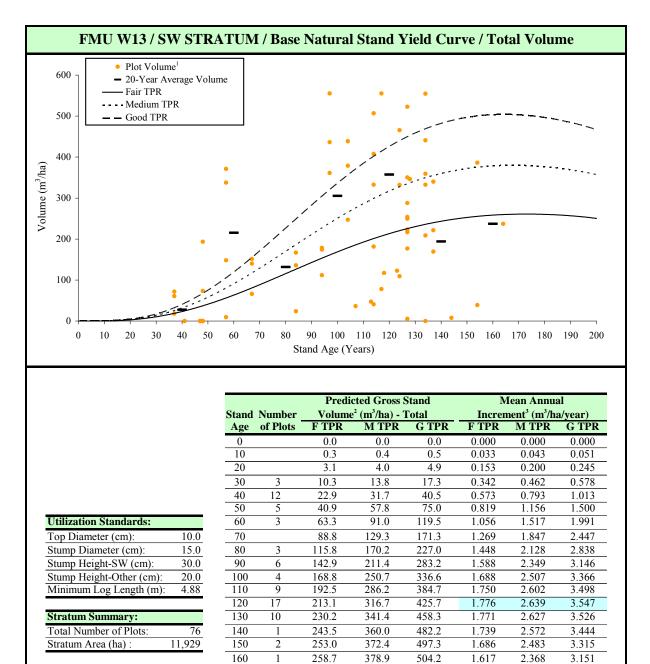


Inputs: Parameter Values a ₀ -4.658E-03	Stand	Number		ted Gross S (m³/ha) - Co	lean Annual nent ³ (m³/ha/year)			
Eqn: $2P+k$ a_1 $8.458E-04$	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 2.7585383	0		0.0	0.0	0.0	0.000	0.000	0.000
k 50	10		0.8	1.4	2.5	0.083	0.141	0.254
Site Index Inputs F 7.6	20		4.6	7.8	14.1	0.231	0.390	0.705
M 9.1	30		11.6	19.6	35.3	0.386	0.652	1.177
G 11.9	40	6	20.9	35.4	63.9	0.524	0.885	1.599
	50	18	31.7	53.7	96.9	0.635	1.073	1.938
Utilization Standards:	60	3	43.0	72.6	131.2	0.716	1.211	2.186
Top Diameter (cm): 10.0	70	1	53.8	91.0	164.3	0.769	1.300	2.347
Stump Diameter (cm): 15.0	80	3	63.7	107.7	194.4	0.796	1.346	2.430
Stump Height-SW (cm): 30.0	90	2	72.2	122.0	220.3	0.802	1.356	2.448
Stump Height-Other (cm): 20.0	100	2	79.0	133.6	241.2	0.790	1.336	2.412
Minimum Log Length (m): 4.88	110	10	84.1	142.2	256.9	0.765	1.293	2.335
	120		87.6	148.1	267.3	0.730	1.234	2.228
Stratum Summary:	130	5	89.4	151.2	273.0	0.688	1.163	2.100
Total Number of Plots: 61	140	6	89.8	151.8	274.2	0.641	1.085	1.958
Stratum Area (ha) : 16,558	150		88.9	150.4	271.5	0.593	1.003	1.810
	160	2	87.0	147.1	265.6	0.544	0.919	1.660
Stratum as a proportion of total	170	1	84.2	142.4	257.1	0.495	0.837	1.512
managed landbase, FMU W13:	180		80.7	136.5	246.4	0.448	0.758	1.369
	190	2	76.7	129.7	234.2	0.404	0.683	1.233
	200		72.4	122.3	220.9	0.362	0.612	1.104

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a(age)^be^(-age/k)

Inputs:				Predi	cted Gross S	Stand	Mean Annual				
Parameter Values a	3.886E-09	Stand	Number	Volume ² (1	m³/ha) - Dec	ciduous	Increment ³ (m ³ /ha/year)				
Eqn: $2P+k$ b	5.1048990	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR		
k	30	0		0.0	0.0	0.0	0.000	0.000	0.000		
Site Index Inputs F	n/a	10		0.0	0.0	0.0	0.000	0.000	0.000		
One deciduous M	n/a	20		0.0	0.0	0.0	0.000	0.000	0.000		
curve for all TPR G	n/a	30		0.0	0.0	0.0	0.002	0.002	0.002		
		40	6	0.2	0.2	0.2	0.004	0.004	0.004		
Utilization Standards	:	50	18	0.3	0.3	0.3	0.007	0.007	0.007		
Гор Diameter (cm):	10.0	60	3	0.6	0.6	0.6	0.010	0.010	0.010		
Stump Diameter (cm):	15.0	70	1	1.0	1.0	1.0	0.014	0.014	0.014		
Stump Height-SW (cm): 30.0	80	3	1.4	1.4	1.4	0.018	0.018	0.018		
Stump Height-Other (c	m): 20.0	90	2	1.8	1.8	1.8	0.020	0.020	0.020		
Minimum Log Length	(m): 4.88	100	2	2.2	2.2	2.2	0.022	0.022	0.022		
		110	10	2.6	2.6	2.6	0.024	0.024	0.024		
Stratum Summary:		120		2.9	2.9	2.9	0.024	0.024	0.024		
Fotal Number of Plots:	61	130	5	3.2	3.2	3.2	0.024	0.024	0.024		
Stratum Area (ha) :	16,558	140	6	3.3	3.3	3.3	0.024	0.024	0.024		
		150		3.4	3.4	3.4	0.022	0.022	0.022		
		160	2	3.3	3.3	3.3	0.021	0.021	0.021		
Stratum as a proport	ion of total	170	1	3.3	3.3	3.3	0.019	0.019	0.019		
nanaged landbase, F	MU W13:	180		3.1	3.1	3.1	0.017	0.017	0.017		
		190	2	3.0	3.0	3.0	0.016	0.016	0.016		
		200		2.8	2.8	2.8	0.014	0.014	0.014		



¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

SW Stratum Base Natural Stand Yield Curves

Stratum as a proportion of total managed landbase, FMU W13:

250.4 ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

261.0

260.1

256.5

170

180

190

200

² Gross total stand volume is the sum of gross coniferous stand volume plus gross deciduous stand volume. ³ Maximum MAI highlighted in blue.

380.0

376.3

368.6

357.4

503.6

496.5

483.9

466.9

1.535

1.445

1.350

1.252

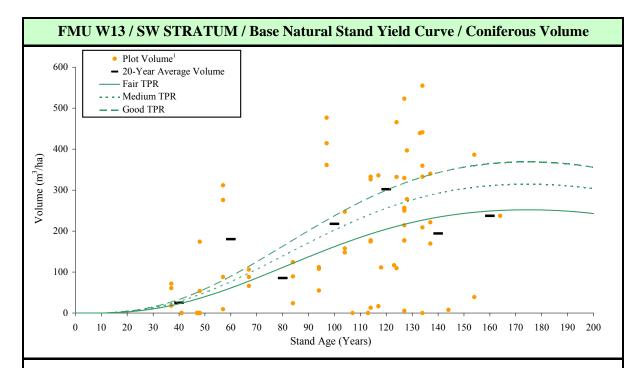
2.235

2.091

1.940

1.787

2.962

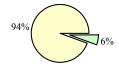

2.758

2.547

2.335

Mean Annual

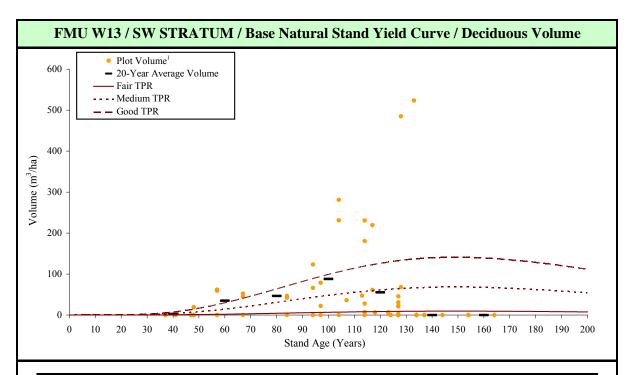
2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)


Predicted Gross Stand

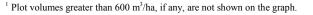
Parameter Values Eqn: 2P+k	$\frac{a_0}{a_1}$	3.753E-05 9.751E-06	Stand Age
	b	3.4688798	0
	k	50	10
Site Index Inputs	F	10.3	20
	М	13.9	30
	G	16.9	40
			50
Utilization Stand	lard	s:	60

Cullzation Standards.	
Top Diameter (cm):	10.0
Stump Diameter (cm):	15.0
Stump Height-SW (cm):	30.0
Stump Height-Other (cm):	20.0
Minimum Log Length (m):	4.88

Stratum Summary:								
Total Number of Plots:	76							
Stratum Area (ha) :	11,929							


Stratum as a proportion of total managed landbase, FMU W13:

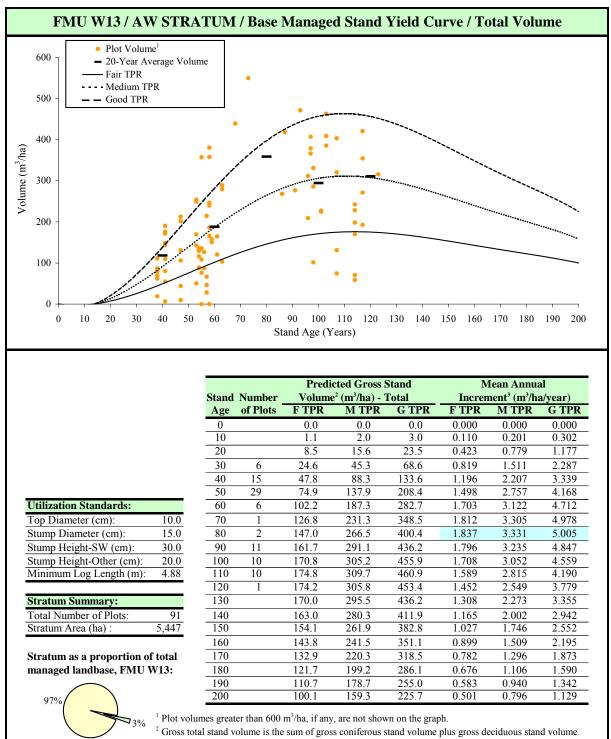
umber Volume² (m³/ha) - Conifer Increment³ (m³/ha/year) f Plots F TPR M TPR G TPR F TPR M TPR G TPR 0.0 0.0 0.0 0.000 0.000 0.000 0.3 0.4 0.5 0.033 0.042 0.049 3.0 3.8 4.4 0.151 0.189 0.221 10.1 12.6 0.336 0.420 0.492 14.8 12 22.4 28.0 32.8 0.560 0.700 0.820 39.8 49.7 58.2 0.796 0.994 1.165 5 3 61.3 76.6 89.7 1.022 1.276 1.496 60 70 1.792 85.7 107.0 125.4 1.224 1.529 111.5 80 139.2 1.393 1.740 2.040 3 163.2 90 137.3 201.0 1.906 2.234 171.5 1.526 6 100 162.0 202.4 237.2 2.024 2.372 4 1.620 270.3 2.097 2.457 110 0 184.7 230.6 1.679 2.128 255.4 2.494 120 17 204.4 299.3 1.704 2.123 130 10 221.0 276.0 323.5 1.700 2.488 233.9 292.2 2.087 140 342.5 1.671 2.446 1 243.3 303.9 356.2 1.622 2.026 2.375 150 2 160 249.2 311.3 364.8 1.558 1.945 2.280 1 251.8 1.850 2.168 170 314.5 368.6 1.481 180 251.3 313.9 368.0 1.396 1.744 2.044 190 248.2 310.1 363.4 1.307 1.632 1.913 1.214 200 242.8 303.3 355.5 1.516 1.777


¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

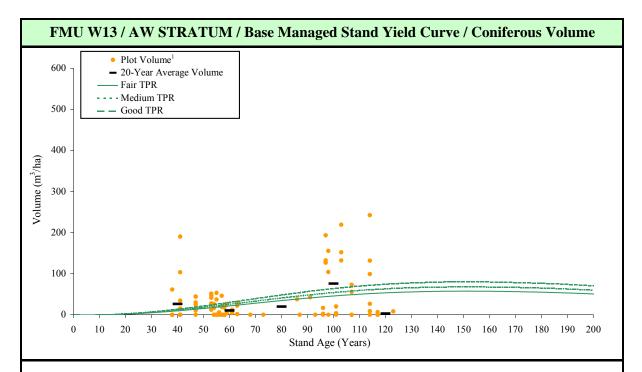
2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)

Inputs:				Predicted Gross Stand Volume ² (m ³ /ha) - Deciduous			Mean Annual Increment ³ (m³/ha/year)		
Parameter Values a ₀	-5.878E-07	Stand	Number						
Eqn: $2P+k$ $\overline{a_1}$	4.687E-08	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b	4.9741427	0		0.0	0.0	0.0	0.000	0.000	0.000
k	30	10		0.0	0.0	0.0	0.000	0.001	0.002
Site Index Inputs F 13.0		20		0.0	0.2	0.5	0.002	0.012	0.024
М	15.8	30	3	0.2	1.2	2.6	0.006	0.042	0.086
G	19.2	40	12	0.5	3.7	7.7	0.013	0.093	0.193
		50	5	1.1	8.1	16.7	0.023	0.163	0.335
Utilization Standards:		60	3	2.0	14.4	29.7	0.034	0.240	0.495
Top Diameter (cm):	10.0	70		3.1	22.2	45.8	0.045	0.318	0.655
Stump Diameter (cm):	15.0	80	3	4.4	31.0	63.8	0.054	0.387	0.798
Stump Height-SW (cm)	: 30.0	90	6	5.6	39.9	82.1	0.062	0.443	0.913
Stump Height-Other (cm): 20.0		100	4	6.8	48.3	99.4	0.068	0.483	0.994
Minimum Log Length (m): 4.88		110	9	7.8	55.5	114.4	0.071	0.505	1.040
		120	17	8.6	61.4	126.4	0.072	0.511	1.053
Stratum Summary:		130	10	9.2	65.5	134.9	0.071	0.504	1.037
Total Number of Plots:	76	140	1	9.5	67.8	139.7	0.068	0.484	0.998
Stratum Area (ha) :	11,929	150	2	9.6	68.5	141.1	0.064	0.457	0.941
		160	1	9.5	67.6	139.4	0.059	0.423	0.871
Stratum as a proportion of total		170		9.2	65.5	135.0	0.054	0.385	0.794
managed landbase, FMU W13:		180		8.8	62.4	128.5	0.049	0.347	0.714
		190		8.2	58.5	120.5	0.043	0.308	0.634
94%		200		7.6	54.1	111.5	0.038	0.271	0.557

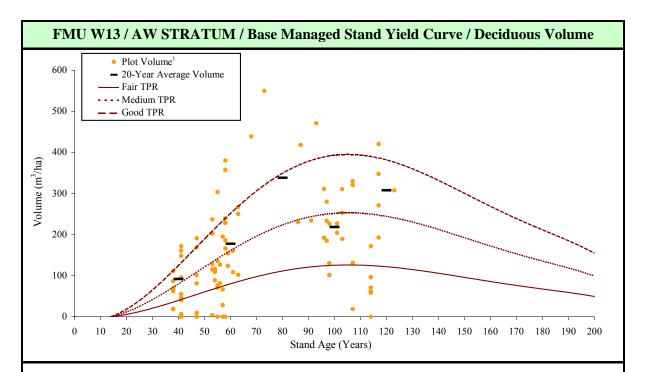
6%



Appendix XIII. FMU W13 Base Managed Stand Yield Curves


AW Stratum Base Managed Stand Yield Curves

³ Maximum MAI highlighted in blue.

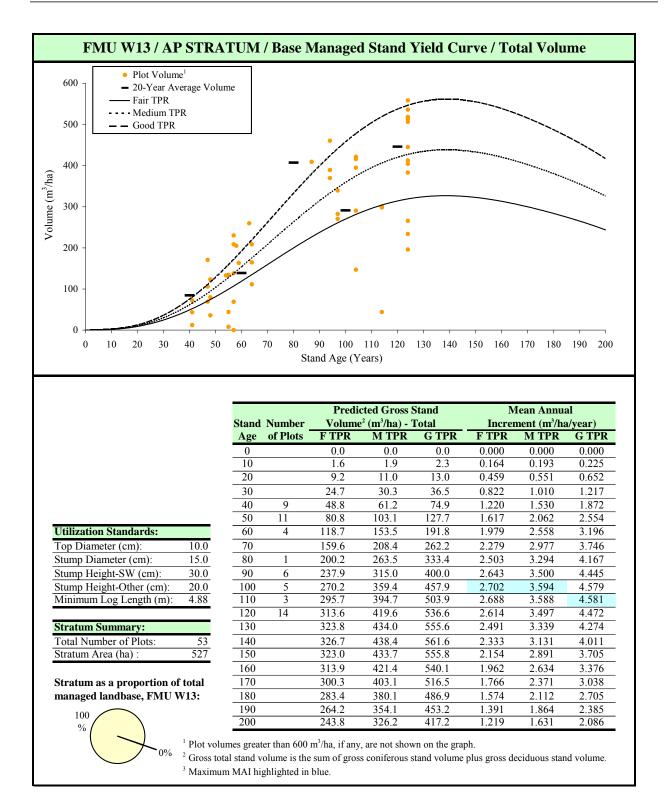


Inputs: Parameter Values a ₀ -7.806E-06	Stand	Number		cted Gross S (m³/ha) - Co			lean Annua nent ³ (m³/ha	
$Eqn: 2P+k \qquad \overline{a_1} 2.389 \text{E-}05$	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 3.0333416	0		0.0	0.0	0.0	0.000	0.000	0.000
k 50	10		0.3	0.3	0.4	0.026	0.030	0.036
Site Index Inputs F 12.4	20		1.7	2.0	2.4	0.086	0.101	0.119
M 14.7	30	6	4.8	5.7	6.7	0.160	0.189	0.223
G 17.2	40	15	9.4	11.1	13.1	0.235	0.278	0.328
	50	29	15.2	17.9	21.1	0.303	0.359	0.422
Utilization Standards:	60	6	21.6	25.5	30.1	0.360	0.425	0.501
Top Diameter (cm): 10.0	70	1	28.2	33.4	39.3	0.403	0.477	0.561
Stump Diameter (cm): 15.0	80	2	34.6	41.0	48.2	0.433	0.512	0.603
Stump Height-SW (cm): 30.0	90	11	40.5	47.9	56.4	0.450	0.533	0.627
Stump Height-Other (cm): 20.0	100	10	45.7	54.0	63.6	0.457	0.540	0.636
Minimum Log Length (m): 4.88	110	10	49.9	59.0	69.5	0.454	0.537	0.632
	120	1	53.2	62.9	74.1	0.444	0.525	0.618
Stratum Summary:	130		55.6	65.7	77.4	0.427	0.505	0.595
Total Number of Plots: 91	140		56.9	67.3	79.3	0.407	0.481	0.566
Stratum Area (ha) : 5,447	150		57.5	68.0	80.0	0.383	0.453	0.534
	160		57.2	67.7	79.7	0.358	0.423	0.498
Stratum as a proportion of total	170		56.3	66.6	78.4	0.331	0.392	0.461
managed landbase, FMU W13:	180		54.8	64.9	76.4	0.305	0.360	0.424
\frown	190		52.9	62.6	73.7	0.278	0.329	0.388
97%	200		50.6	59.8	70.5	0.253	0.299	0.352

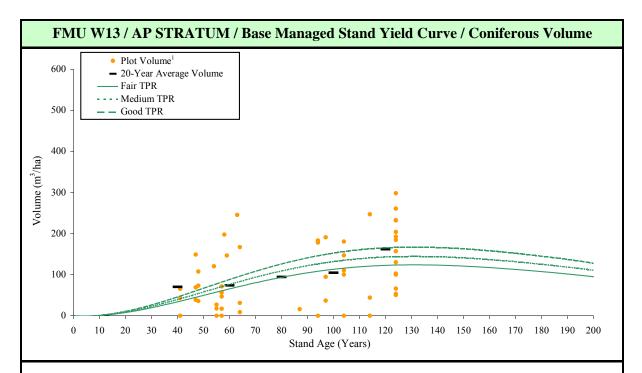
97%

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

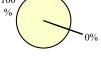
iputs:			Predi	cted Gross S	Stand	Ν	Iean Annu	al
rameter Values a ₀ -1.966E-03	Stand	Number	Volume ² (1	m³/ha) - Deo	ciduous	Incren	nent ³ (m ³ /h	a/year)
$qn: 2P+k$ a_1 1.579E-04	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 3.4714176	0		0.0	0.0	0.0	0.000	0.000	0.000
k 30	10		0.8	1.7	2.7	0.085	0.170	0.266
e Index Inputs F 15.0	20		6.7	13.5	21.2	0.337	0.677	1.058
M 17.5	30	6	19.8	39.7	61.9	0.658	1.322	2.064
G 20.4	40	15	38.4	77.1	120.5	0.961	1.928	3.011
	50	29	59.7	119.9	187.3	1.195	2.398	3.745
ilization Standards:	60	6	80.6	161.8	252.7	1.343	2.697	4.211
p Diameter (cm): 10.0	70	1	98.6	198.0	309.2	1.409	2.828	4.417
ump Diameter (cm): 15.0	80	2	112.3	225.5	352.2	1.404	2.819	4.402
ump Height-SW (cm): 30.0	90	11	121.2	243.2	379.8	1.346	2.702	4.220
ump Height-Other (cm): 20.0	100	10	125.2	251.2	392.3	1.252	2.512	3.923
inimum Log Length (m): 4.88	110	10	124.8	250.6	391.4	1.135	2.278	3.558
	120	1	121.0	242.9	379.3	1.008	2.024	3.161
ratum Summary:	130		114.5	229.8	358.8	0.881	1.768	2.760
tal Number of Plots: 91	140		106.1	212.9	332.6	0.758	1.521	2.375
ratum Area (ha) : 5,447	150		96.6	193.9	302.8	0.644	1.293	2.018
	160		86.6	173.8	271.4	0.541	1.086	1.696
ratum as a proportion of total	170		76.6	153.7	240.0	0.450	0.904	1.412
anaged landbase, FMU W13:	180		66.9	134.3	209.7	0.372	0.746	1.165
\frown	190		57.8	116.1	181.3	0.304	0.611	0.954
97%	200		49.5	99.4	155.2	0.248	0.497	0.776

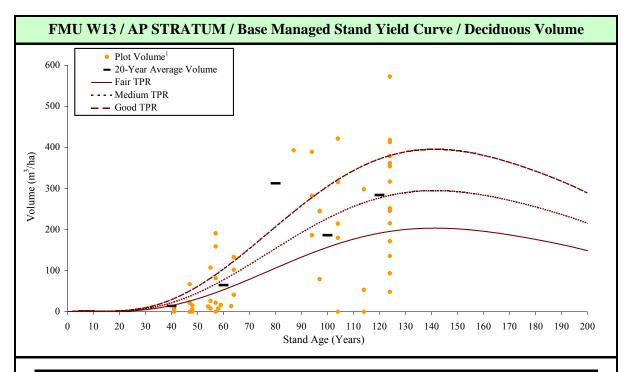


¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.



AP Stratum Base Managed Stand Yield Curves

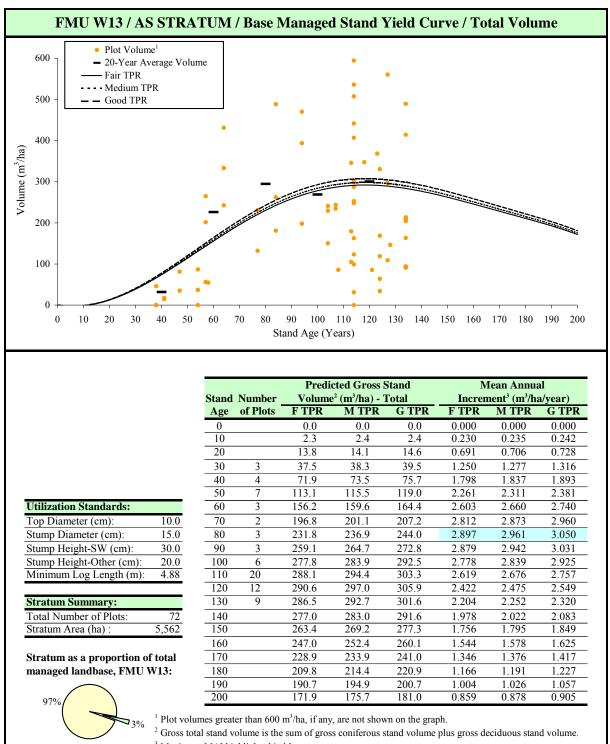




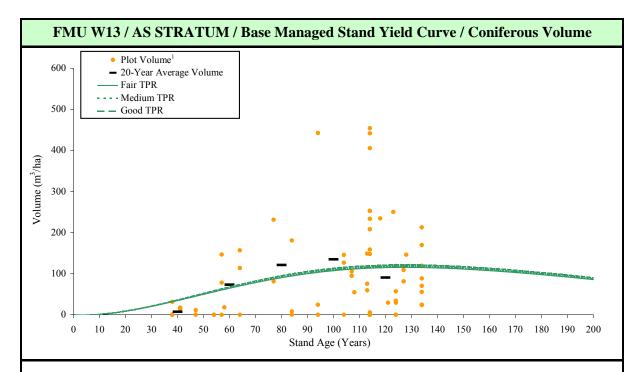
Inputs: Parameter Values a ₀ -3.0)35E-04	Stand	Number		ted Gross S (m³/ha) - Co			lean Annua nent ³ (m³/ha	
Eqn: $2P+k$ $\overline{a_1}$ 3.3	854E-04	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 2.6	347023	0		0.0	0.0	0.0	0.000	0.000	0.000
k	50	10		1.6	1.8	2.1	0.159	0.185	0.214
Site Index Inputs F	14.3	20		8.1	9.4	10.9	0.403	0.470	0.544
М	16.5	30		19.2	22.4	25.9	0.641	0.747	0.864
G	19.0	40	9	33.6	39.1	45.3	0.839	0.978	1.132
		50	11	49.5	57.7	66.7	0.990	1.154	1.334
Utilization Standards:		60	4	65.5	76.4	88.3	1.092	1.273	1.472
Top Diameter (cm):	10.0	70		80.5	93.8	108.5	1.150	1.340	1.550
Stump Diameter (cm):	15.0	80	1	93.7	109.2	126.3	1.171	1.365	1.579
Stump Height-SW (cm):	30.0	90	6	104.6	122.0	141.1	1.162	1.355	1.567
Stump Height-Other (cm):	20.0	100	5	113.1	131.8	152.4	1.131	1.318	1.524
Minimum Log Length (m):	4.88	110	3	119.0	138.7	160.4	1.082	1.261	1.459
		120	14	122.5	142.8	165.2	1.021	1.190	1.377
Stratum Summary:		130		123.9	144.4	167.0	0.953	1.111	1.285
Total Number of Plots:	53	140		123.3	143.7	166.2	0.881	1.026	1.187
Stratum Area (ha) :	527	150		121.0	141.1	163.2	0.807	0.941	1.088
		160		117.5	136.9	158.4	0.734	0.856	0.990
Stratum as a proportion of	of total	170		112.8	131.5	152.1	0.664	0.774	0.895
managed landbase, FMU	W13:	180		107.4	125.2	144.8	0.597	0.696	0.805
100		190		101.4	118.2	136.7	0.534	0.622	0.720
100 %		200		95.0	110.8	128.1	0.475	0.554	0.641

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

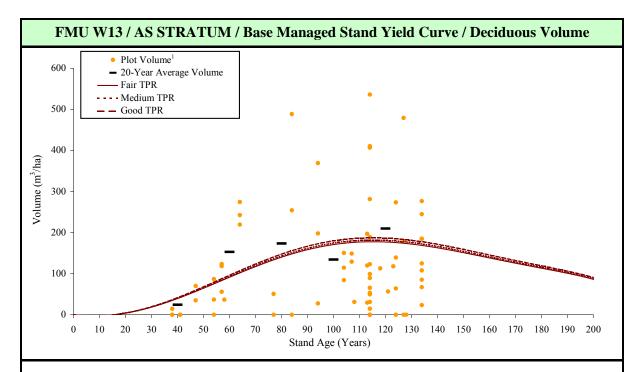
Inputs: Parameter Values a ₀ -2.908E-06	Stand	Number		cted Gross S m³/ha) - Dec			Iean Annua nent ³ (m³/ha	
Eqn: $2P+k$ a_1 2.977E-07		of Plots	FTPR	MTPR	G TPR	F TPR	M TPR	G TPR
b 4.7295388	3 0		0.0	0.0	0.0	0.000	0.000	0.000
k 30	0 10		0.1	0.1	0.1	0.006	0.009	0.011
Site Index Inputs F 14.9	20		1.1	1.6	2.2	0.056	0.081	0.109
M 17.2	2 30		5.5	7.9	10.6	0.182	0.263	0.353
G 19.8	3 40	9	15.2	22.1	29.6	0.381	0.552	0.740
	50	11	31.4	45.4	61.0	0.627	0.909	1.219
Utilization Standards:	60	4	53.2	77.1	103.4	0.887	1.285	1.724
Top Diameter (cm): 10.0) 70		79.1	114.5	153.7	1.130	1.636	2.195
Stump Diameter (cm): 15.0	80	1	106.5	154.3	207.1	1.332	1.929	2.588
Stump Height-SW (cm): 30.0	90	6	133.3	193.0	259.0	1.481	2.145	2.878
Stump Height-Other (cm): 20.0	0 100	5	157.2	227.6	305.4	1.572	2.276	3.054
Minimum Log Length (m): 4.88	3 110	3	176.7	256.0	343.5	1.607	2.327	3.123
	120	14	191.1	276.8	371.4	1.593	2.307	3.095
Stratum Summary:	130		199.9	289.6	388.6	1.538	2.228	2.989
Total Number of Plots: 53	3 140		203.4	294.6	395.3	1.453	2.105	2.824
Stratum Area (ha) : 527	150		202.0	292.6	392.6	1.347	1.951	2.617
	160		196.4	284.5	381.7	1.227	1.778	2.386
Stratum as a proportion of total	170		187.4	271.5	364.3	1.103	1.597	2.143
managed landbase, FMU W13:	180		176.0	254.9	342.1	0.978	1.416	1.900
100	190		162.9	235.9	316.5	0.857	1.242	1.666
100	200		148.7	215.4	289.1	0.744	1.077	1.445



¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.


AS Stratum Base Managed Stand Yield Curves

³ Maximum MAI highlighted in blue.

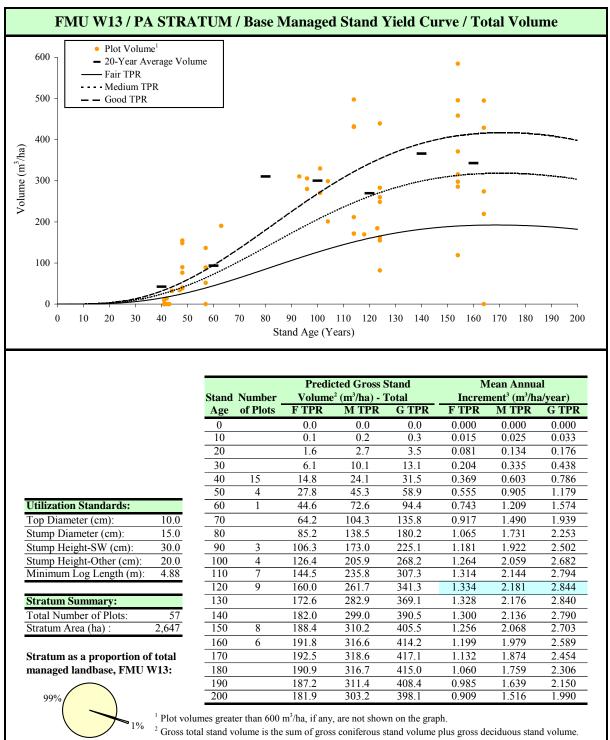

Inputs:				cted Gross S			Iean Annua	
Parameter Values a_0 5.273E-03	Stand	Number	Volume ²	(m ³ /ha) - Co	onifer	Incren	nent ³ (m ³ /ha	a/year)
<i>Eqn:</i> $2P+k$ a ₁ 6.360E-05	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 2.5590310	0		0.0	0.0	0.0	0.000	0.000	0.000
k 50	10		1.8	1.8	1.9	0.179	0.183	0.188
Site Index Inputs F 12.0	20		8.6	8.8	9.1	0.432	0.441	0.455
M 14.1	30	3	20.0	20.4	21.0	0.665	0.680	0.700
G 17.0	40	4	34.1	34.9	35.9	0.853	0.872	0.898
	50	7	49.4	50.5	52.1	0.989	1.011	1.041
Utilization Standards:	60	3	64.5	66.0	68.0	1.076	1.100	1.133
Top Diameter (cm): 10.0	70	2	78.4	80.1	82.5	1.120	1.145	1.179
Stump Diameter (cm): 15.0	80	3	90.3	92.3	95.1	1.129	1.154	1.189
Stump Height-SW (cm): 30.0	90	3	100.0	102.2	105.3	1.111	1.135	1.170
Stump Height-Other (cm): 20.0	100	6	107.2	109.6	112.9	1.072	1.096	1.129
Minimum Log Length (m): 4.88	110	20	112.0	114.5	117.9	1.018	1.041	1.072
	120	12	114.5	117.1	120.6	0.955	0.976	1.005
Stratum Summary:	130	9	115.1	117.7	121.2	0.885	0.905	0.932
Total Number of Plots: 72	140		113.9	116.5	120.0	0.814	0.832	0.857
Stratum Area (ha) : 5,562	150		111.3	113.8	117.2	0.742	0.758	0.781
	160		107.5	109.9	113.2	0.672	0.687	0.707
Stratum as a proportion of total	170		102.8	105.0	108.2	0.604	0.618	0.636
managed landbase, FMU W13:	180		97.4	99.5	102.5	0.541	0.553	0.570
	190		91.6	93.6	96.4	0.482	0.493	0.507
97%	200		85.5	87.4	90.0	0.427	0.437	0.450

⁻¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

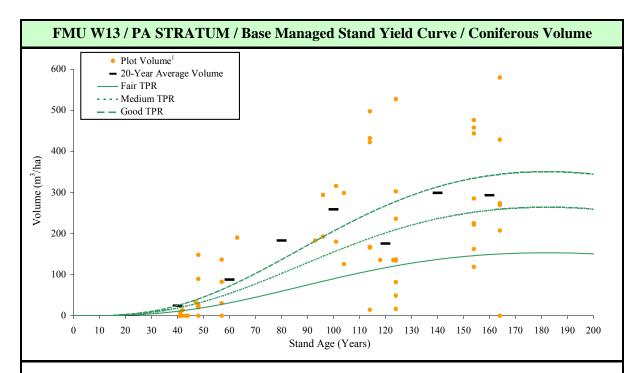
/year) G TPR 0.000 0.054 0.273 0.616 0.995 1.340 1.607 1.781 1.861 1.861 1.796 1.685 1.544 1.388 1.226 1.068 0.918 0.781 0.658 0.549 0.455

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = (a₀+a₁*SI)(age)^be^(-age/k)

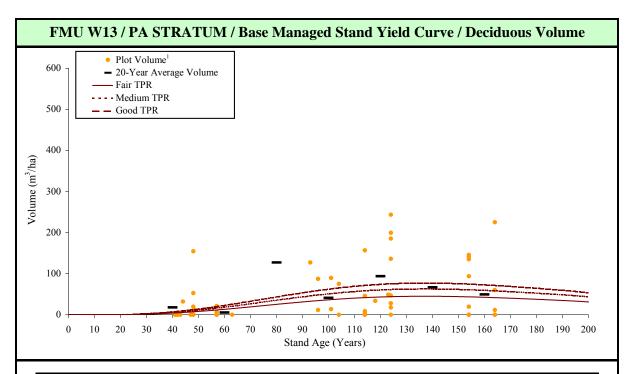
Inputs:				Predic	cted Gross S	Stand	Ν	Iean Annual
Parameter Values a ₀	9.272E-05	Stand	Number	Volume ² (1	m³/ha) - Deo	iduous	Incren	nent ³ (m ³ /ha/
Eqn: $2P+k$ a_1	8.927E-07	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR
b	3.8275627	0		0.0	0.0	0.0	0.000	0.000
k	30	10		0.5	0.5	0.5	0.051	0.052
Site Index Inputs F	14.7	20		5.2	5.3	5.5	0.259	0.265
М	17.2	30	3	17.5	17.9	18.5	0.585	0.597
G	20.9	40	4	37.8	38.6	39.8	0.945	0.966
		50	7	63.6	65.0	67.0	1.273	1.300
Utilization Standards:		60	3	91.6	93.6	96.4	1.527	1.560
Top Diameter (cm):	10.0	70	2	118.4	121.0	124.7	1.692	1.729
Stump Diameter (cm):	15.0	80	3	141.5	144.5	148.9	1.768	1.807
Stump Height-SW (cm)	: 30.0	90	3	159.1	162.6	167.5	1.768	1.806
Stump Height-Other (cn	n): 20.0	100	6	170.6	174.3	179.6	1.706	1.743
Minimum Log Length (1	m): 4.88	110	20	176.1	179.9	185.4	1.601	1.635
		120	12	176.0	179.9	185.3	1.467	1.499
Stratum Summary:		130	9	171.4	175.1	180.4	1.318	1.347
Total Number of Plots:	72	140		163.1	166.6	171.6	1.165	1.190
Stratum Area (ha) :	5,562	150		152.1	155.4	160.2	1.014	1.036
		160		139.6	142.6	146.9	0.872	0.891
Stratum as a proportio	on of total	170		126.1	128.8	132.8	0.742	0.758
managed landbase, FM	IU W13:	180		112.5	114.9	118.4	0.625	0.638
		190		99.1	101.3	104.3	0.522	0.533
97%		200		86.4	88.3	91.0	0.432	0.441
,,,,,								



¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.


PA Stratum Base Managed Stand Yield Curves

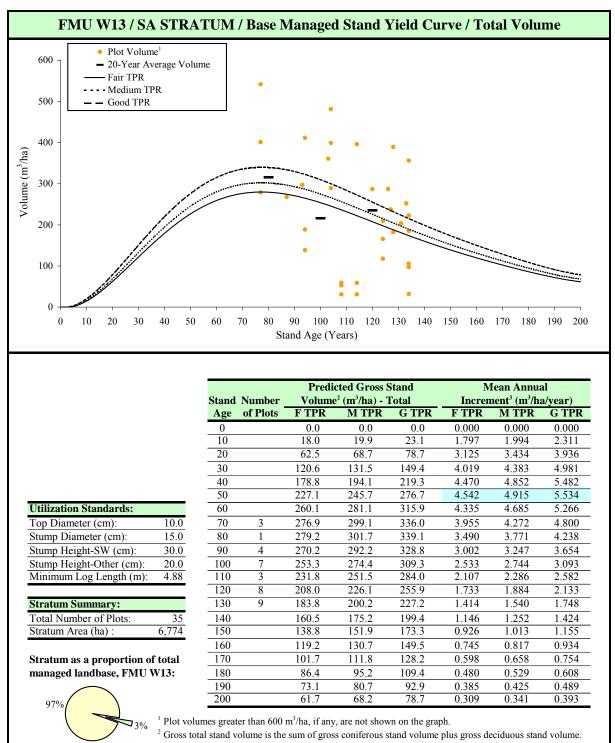
³ Maximum MAI highlighted in blue.



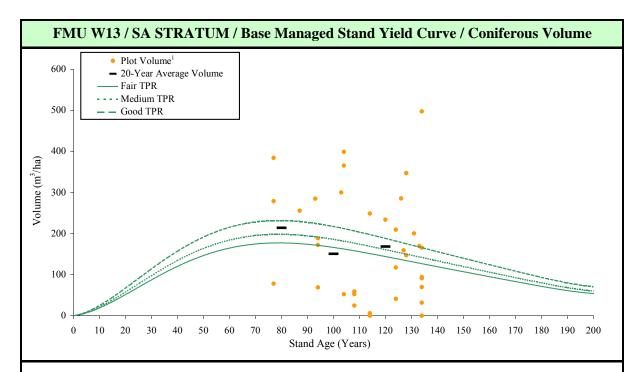
Inputs: Parameter Valu	ies a ₀	-3.803E-05	Stand	Number		cted Gross S (m³/ha) - Ce			lean Annua nent ³ (m³/ha	
Eqn: $2P+k$	a_1	7.125E-06	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
	b	3.6277730	0		0.0	0.0	0.0	0.000	0.000	0.000
	k	50	10		0.1	0.2	0.3	0.013	0.022	0.029
Site Index Inpu	ıts F	10.5	20		1.3	2.2	3.0	0.065	0.112	0.149
	Μ	14.3	30		4.6	8.0	10.6	0.154	0.266	0.353
	G	17.2	40	15	10.8	18.5	24.6	0.269	0.464	0.615
			50	4	19.8	34.1	45.3	0.396	0.682	0.906
Utilization Sta	ndards	5:	60	1	31.4	54.1	71.8	0.523	0.902	1.197
Top Diameter ((cm):	10.0	70		45.0	77.5	102.9	0.642	1.107	1.470
Stump Diamete	er (cm):	15.0	80		59.8	103.0	136.7	0.747	1.288	1.709
Stump Height-S	SW (cn	n): 30.0	90	3	75.0	129.3	171.6	0.833	1.437	1.907
Stump Height-	Other (cm): 20.0	100	4	90.0	155.1	205.9	0.900	1.551	2.059
Minimum Log	Length	(m): 4.88	110	7	104.1	179.5	238.3	0.946	1.632	2.166
			120	9	116.9	201.5	267.5	0.974	1.679	2.229
Stratum Sumr	nary:		130		127.9	220.5	292.8	0.984	1.696	2.252
Total Number	of Plots	: 57	140		137.0	236.3	313.6	0.979	1.688	2.240
Stratum Area (ha) :	2,647	150	8	144.1	248.4	329.8	0.961	1.656	2.199
			160	6	149.1	257.1	341.3	0.932	1.607	2.133
Stratum as a p	oroport	ion of total	170		152.1	262.2	348.1	0.895	1.543	2.048
managed land	base, F	'MU W13:	180		153.2	264.2	350.7	0.851	1.468	1.948
			190		152.7	263.2	349.4	0.803	1.385	1.839
99%			200		150.5	259.5	344.5	0.753	1.298	1.723

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

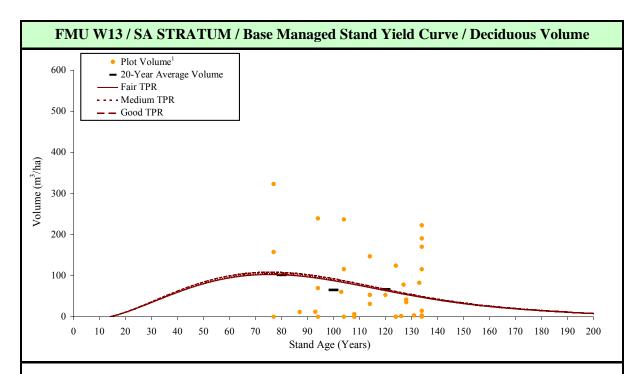
Inputs:				Predic	cted Gross S	stand	N	Iean Annua	al
	346E-08	Stand	Number		m ³ /ha) - Dec			nent (m³/ha	
0	019E-08	Age	of Plots	FTPR	M TPR	G TPR	F TPR	M TPR	G TPF
b 4.	5929020	0		0.0	0.0	0.0	0.000	0.000	0.000
k	30	10		0.0	0.0	0.0	0.002	0.003	0.003
Site Index Inputs F	10.8	20		0.3	0.5	0.6	0.016	0.023	0.028
М	14.6	30		1.5	2.1	2.5	0.050	0.069	0.085
G	17.5	40	15	4.0	5.6	6.8	0.100	0.139	0.171
		50	4	8.0	11.1	13.6	0.160	0.223	0.273
Utilization Standards:		60	1	13.2	18.4	22.6	0.220	0.307	0.377
Top Diameter (cm):	10.0	70		19.2	26.8	32.9	0.275	0.383	0.469
Stump Diameter (cm):	15.0	80		25.4	35.5	43.5	0.318	0.444	0.544
Stump Height-SW (cm):	30.0	90	3	31.3	43.7	53.5	0.348	0.485	0.595
Stump Height-Other (cm):	20.0	100	4	36.4	50.8	62.2	0.364	0.508	0.622
Minimum Log Length (m)	: 4.88	110	7	40.4	56.4	69.1	0.367	0.512	0.628
		120	9	43.2	60.2	73.8	0.360	0.502	0.615
Stratum Summary:		130		44.7	62.3	76.4	0.344	0.479	0.587
Total Number of Plots:	57	140		45.0	62.8	76.9	0.321	0.448	0.549
Stratum Area (ha) :	2,647	150	8	44.2	61.8	75.7	0.295	0.412	0.504
		160	6	42.6	59.5	72.9	0.267	0.372	0.456
Stratum as a proportion	of total	170		40.4	56.3	69.0	0.237	0.331	0.406
managed landbase, FMU	W13:	180		37.6	52.5	64.3	0.209	0.292	0.357
		190		34.5	48.2	59.1	0.182	0.254	0.311
99%		200		31.3	43.7	53.6	0.157	0.219	0.268



¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.



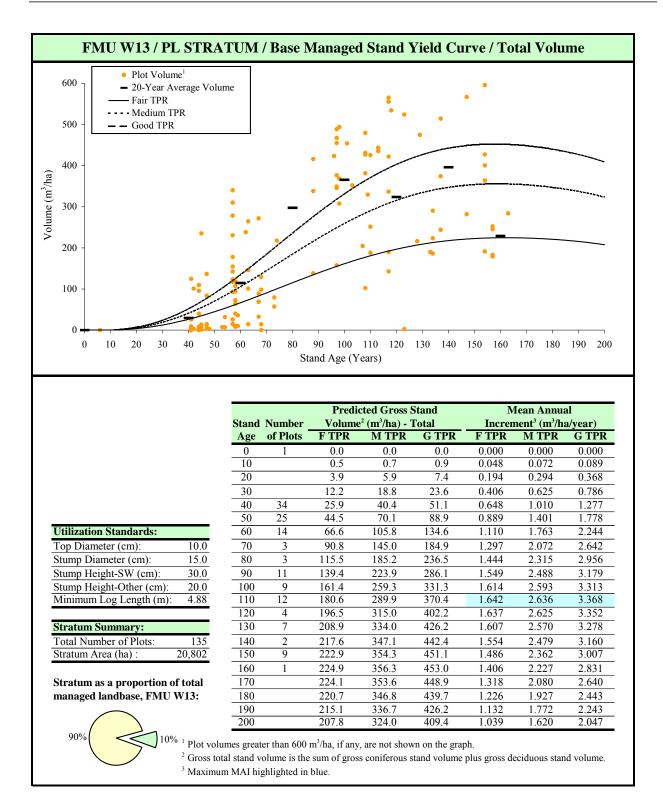
SA Stratum Base Managed Stand Yield Curves



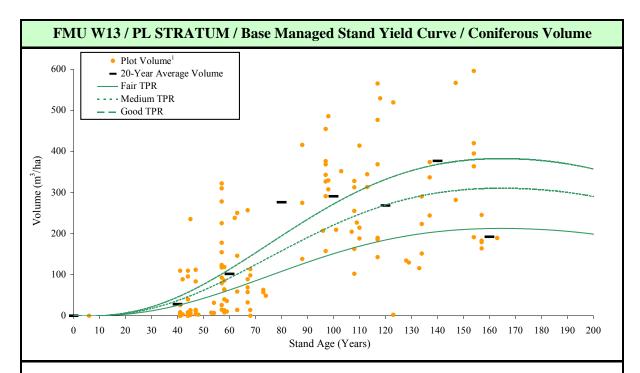
Inputs:				Predic	cted Gross S	Stand	Μ	lean Annua	ıl
Parameter Values a ₀ 6	5.006E-02	Stand	Number	Volume ²	(m ³ /ha) - Co	onifer	Incren	nent ³ (m ³ /ha	a/year)
Eqn: $2P+k$ $\overline{a_1}$ 1	.367E-02	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 1	.9811326	0		0.0	0.0	0.0	0.000	0.000	0.000
k	40	10		16.5	18.4	21.6	1.650	1.845	2.156
Site Index Inputs F	11.8	20		50.7	56.7	66.3	2.537	2.836	3.314
М	13.7	30		88.2	98.6	115.3	2.941	3.288	3.842
G	16.8	40		121.5	135.8	158.7	3.037	3.396	3.968
		50		147.2	164.6	192.4	2.945	3.292	3.847
Utilization Standards:		60		164.5	183.9	215.0	2.742	3.066	3.583
Top Diameter (cm):	10.0	70	3	173.9	194.4	227.2	2.484	2.777	3.246
Stump Diameter (cm):	15.0	80	1	176.5	197.3	230.6	2.206	2.466	2.882
Stump Height-SW (cm):	30.0	90	4	173.5	194.0	226.7	1.928	2.156	2.519
Stump Height-Other (cm)): 20.0	100	7	166.5	186.2	217.6	1.665	1.862	2.176
Minimum Log Length (m	i): 4.88	110	3	156.6	175.1	204.7	1.424	1.592	1.861
		120	8	144.9	162.0	189.4	1.208	1.350	1.578
Stratum Summary:		130	9	132.3	147.9	172.8	1.018	1.138	1.329
Total Number of Plots:	35	140		119.3	133.4	155.9	0.852	0.953	1.113
Stratum Area (ha) :	6,774	150		106.5	119.1	139.2	0.710	0.794	0.928
		160		94.3	105.4	123.2	0.589	0.659	0.770
Stratum as a proportion	n of total	170		82.8	92.6	108.2	0.487	0.544	0.636
managed landbase, FM	U W13:	180		72.2	80.7	94.4	0.401	0.449	0.524
\frown		190		62.6	70.0	81.8	0.329	0.368	0.430
97%		200		54.0	60.3	70.5	0.270	0.302	0.353

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

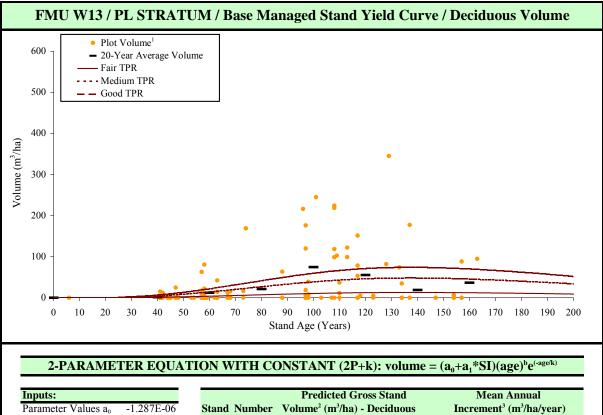
Inputs:					Predi	cted Gross S	Stand	Ν	lean Annu	al
Parameter Values	a	3.824E-04	Stand	Number		m ³ /ha) - Dec		Incren	nent ³ (m ³ /h	a/vear)
Eqn: $2P+k$	a ₁	4.933E-06	Age	of Plots	FTPR	M TPR	G TPR	F TPR	M TPR	G TPR
	b	3.7271879	0		0.0	0.0	0.0	0.000	0.000	0.000
	k	20	10		1.5	1.5	1.5	0.146	0.149	0.155
Site Index Inputs	F	14.2	20		11.8	12.0	12.4	0.588	0.598	0.621
	М	15.7	30		32.3	32.9	34.2	1.078	1.096	1.139
	G	19.4	40		57.3	58.3	60.6	1.433	1.456	1.514
			50		79.9	81.2	84.4	1.597	1.623	1.687
Utilization Stand	ards	:	60		95.6	97.1	101.0	1.593	1.619	1.683
Top Diameter (cm	n):	10.0	70	3	103.0	104.6	108.8	1.471	1.495	1.554
Stump Diameter (cm):	15.0	80	1	102.7	104.4	108.5	1.284	1.305	1.357
Stump Height-SW	(cm): 30.0	90	4	96.6	98.2	102.1	1.074	1.091	1.134
Stump Height-Oth	er (c	m): 20.0	100	7	86.8	88.2	91.7	0.868	0.882	0.917
Minimum Log Ler	ngth	(m): 4.88	110	3	75.1	76.3	79.4	0.683	0.694	0.721
			120	8	63.0	64.0	66.6	0.525	0.534	0.555
Stratum Summan	ry:		130	9	51.5	52.3	54.4	0.396	0.403	0.419
Total Number of I	Plots:	35	140		41.2	41.8	43.5	0.294	0.299	0.311
Stratum Area (ha)	:	6,774	150		32.3	32.8	34.1	0.215	0.219	0.227
			160		24.9	25.3	26.3	0.156	0.158	0.165
Stratum as a pro	porti	on of total	170		18.9	19.3	20.0	0.111	0.113	0.118
managed landbas	se, Fl	MU W13:	180		14.2	14.5	15.0	0.079	0.080	0.083
\frown			190		10.5	10.7	11.1	0.056	0.056	0.059
97%			200		7.7	7.9	8.2	0.039	0.039	0.041



¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.



PL Stratum Base Managed Stand Yield Curves

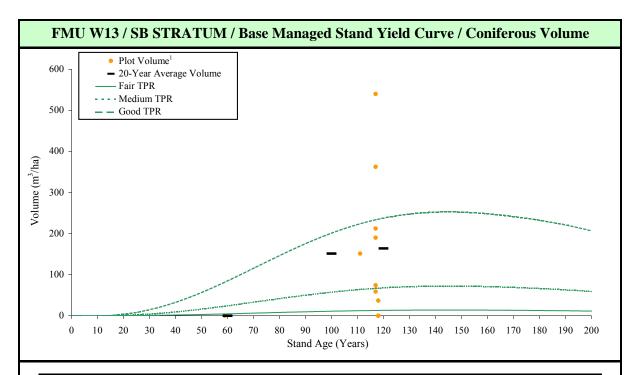


Inputs: Parameter Values a ₀ -1.1061	E-04 Stand	Number		cted Gross S (m³/ha) - C			Iean Annua nent ³ (m³/ha	
<i>Eqn:</i> $2P+k$ a ₁ 3.857	E-05 Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPF
b 3.2822	2988 0	1	0.0	0.0	0.0	0.000	0.000	0.000
k	50 10		0.5	0.7	0.9	0.048	0.070	0.086
Site Index Inputs F	10.7 20		3.8	5.5	6.8	0.190	0.277	0.342
М	14.4 30		11.8	17.2	21.2	0.392	0.573	0.706
G	17.1 40	34	24.8	36.2	44.6	0.619	0.905	1.114
	50	25	42.2	61.6	75.9	0.844	1.233	1.518
Utilization Standards:	60	14	62.8	91.8	113.1	1.047	1.530	1.884
Top Diameter (cm):	10.0 70	3	85.3	124.7	153.5	1.219	1.781	2.193
Stump Diameter (cm):	15.0 80	3	108.3	158.2	194.8	1.353	1.977	2.436
Stump Height-SW (cm):	30.0 90	11	130.5	190.7	234.8	1.450	2.118	2.609
Stump Height-Other (cm):	20.0 100	9	151.0	220.6	271.7	1.510	2.206	2.717
Minimum Log Length (m):	4.88 110	12	169.0	246.9	304.1	1.536	2.245	2.765
	120	4	184.1	269.0	331.3	1.534	2.242	2.761
Stratum Summary:	130	7	196.0	286.4	352.8	1.508	2.203	2.713
Total Number of Plots:	135 140	2	204.7	299.1	368.3	1.462	2.136	2.631
Stratum Area (ha) : 20	,802 150	9	210.2	307.1	378.2	1.401	2.047	2.521
	160	1	212.7	310.7	382.7	1.329	1.942	2.392
Stratum as a proportion of to	otal 170		212.5	310.4	382.3	1.250	1.826	2.249
managed landbase, FMU W1	3: 180		209.8	306.6	377.6	1.166	1.703	2.098
	190		205.2	299.8	369.2	1.080	1.578	1.943
	200		198.8	290.4	357.7	0.994	1.452	1.789

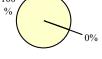
⁶ ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

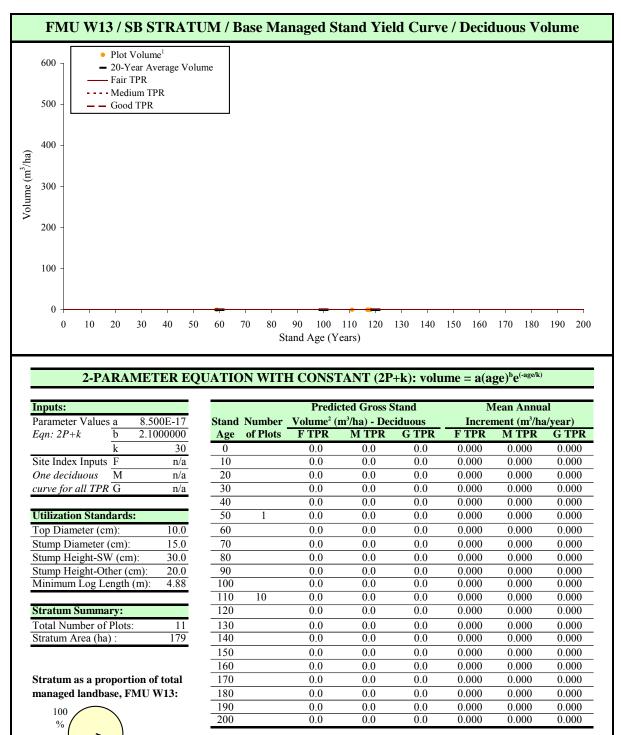

Inputs:			Predic	Stand	Mean Annual				
Parameter Values a ₀ -1.287E-06	5 Stand	Number	Volume ² (1	m³/ha) - Dec	ciduous	Incren	nent ³ (m ³ /ha	a/year)	
<i>Eqn:</i> $2P+k$ a_1 1.342E-07	7 Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR	
b 4.6028704	4 0	1	0.0	0.0	0.0	0.000	0.000	0.000	
k 30) 10		0.0	0.0	0.0	0.001	0.002	0.003	
Site Index Inputs F 10.9	20		0.1	0.3	0.5	0.005	0.017	0.026	
M 14.0	5 30		0.4	1.6	2.4	0.014	0.052	0.080	
G 17.3	3 40	34	1.1	4.2	6.5	0.028	0.105	0.162	
	50	25	2.3	8.4	13.0	0.045	0.169	0.260	
Utilization Standards:	60	14	3.8	14.0	21.6	0.063	0.233	0.359	
Top Diameter (cm): 10.0) 70	3	5.5	20.4	31.4	0.078	0.291	0.449	
Stump Diameter (cm): 15.0) 80	3	7.3	27.0	41.6	0.091	0.337	0.520	
Stump Height-SW (cm): 30.0) 90	11	9.0	33.3	51.3	0.100	0.369	0.570	
Stump Height-Other (cm): 20.0	0 100	9	10.4	38.7	59.7	0.104	0.387	0.597	
Minimum Log Length (m): 4.88	3 110	12	11.6	43.0	66.3	0.105	0.391	0.603	
	120	4	12.4	46.0	70.9	0.103	0.383	0.591	
Stratum Summary:	130	7	12.8	47.6	73.4	0.099	0.366	0.565	
Total Number of Plots: 135	5 140	2	12.9	48.0	74.0	0.092	0.343	0.529	
Stratum Area (ha) : 20,802	2 150	9	12.7	47.2	72.9	0.085	0.315	0.486	
	160	1	12.3	45.6	70.3	0.077	0.285	0.439	
Stratum as a proportion of total	170		11.6	43.2	66.5	0.068	0.254	0.391	
managed landbase, FMU W13:	180		10.8	40.2	62.0	0.060	0.223	0.345	
	190		10.0	37.0	57.0	0.052	0.195	0.300	
	200		9.0	33.5	51.7	0.045	0.168	0.259	

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.



SB Stratum Base Managed Stand Yield Curves



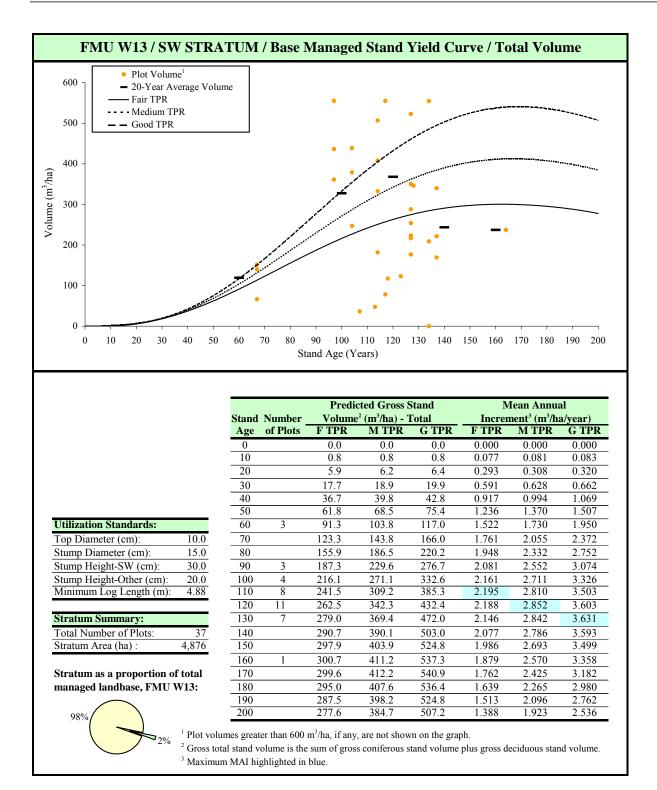


Inputs: Parameter Values a ₀ -2.109E-04			Stand	Number	Predicted Gross Stand Volume ² (m ³ /ha) - Conifer			Mean Annual Increment ³ (m ³ /ha/year)			
Eqn: $2P+k$ $\overline{a_1}$	2.904E		Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR	
b	3.6461	143	0		0.0	0.0	0.0	0.000	0.000	0.000	
k		40	10		0.0	0.1	0.4	0.002	0.012	0.043	
Site Index Inputs F 7.5		20		0.2	1.2	4.2	0.012	0.060	0.210		
М		8.5	30		0.8	4.1	14.3	0.026	0.137	0.478	
G	1	1.6	40		1.8	9.1	31.9	0.044	0.228	0.797	
			50	1	3.1	16.0	56.0	0.062	0.320	1.121	
Utilization Standards:		60		4.7	24.2	84.9	0.078	0.404	1.414		
Top Diameter (cm):	1	0.0	70		6.4	33.1	115.9	0.091	0.473	1.656	
Stump Diameter (cm)	: 1	5.0	80		8.1	41.9	146.9	0.101	0.524	1.836	
Stump Height-SW (cr	n): 3	0.0	90		9.7	50.2	175.8	0.108	0.557	1.953	
Stump Height-Other (cm): 2	20.0	100		11.1	57.4	201.0	0.111	0.574	2.010	
Minimum Log Length	n (m): 4	.88	110	10	12.2	63.3	221.6	0.111	0.575	2.015	
			120		13.1	67.7	237.0	0.109	0.564	1.975	
Stratum Summary:			130		13.6	70.5	247.2	0.105	0.543	1.901	
Total Number of Plots	s:	11	140		13.9	72.0	252.2	0.099	0.514	1.802	
Stratum Area (ha) :		179	150		13.9	72.1	252.6	0.093	0.481	1.684	
			160		13.7	71.0	248.9	0.086	0.444	1.556	
Stratum as a proportion of total			170		13.3	69.0	241.8	0.078	0.406	1.422	
managed landbase, FMU W13:			180		12.8	66.2	232.0	0.071	0.368	1.289	
100			190		12.1	62.8	220.0	0.064	0.331	1.158	
%			200		11.4	59.0	206.6	0.057	0.295	1.033	

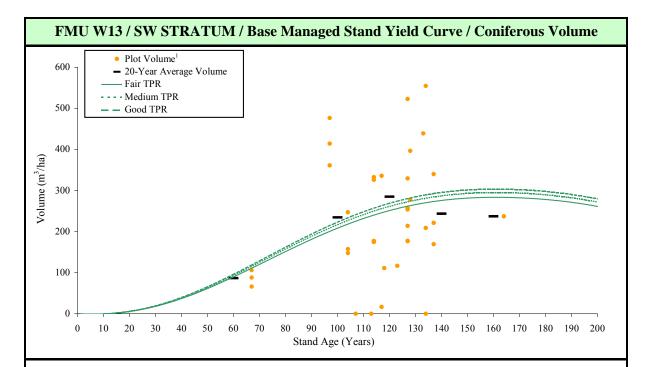
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

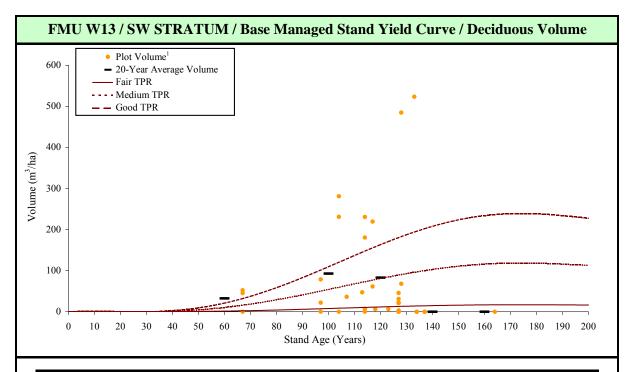
0%


 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.

³ MAI was 0 in all cases; thus no maximum MAI has been highlighted.



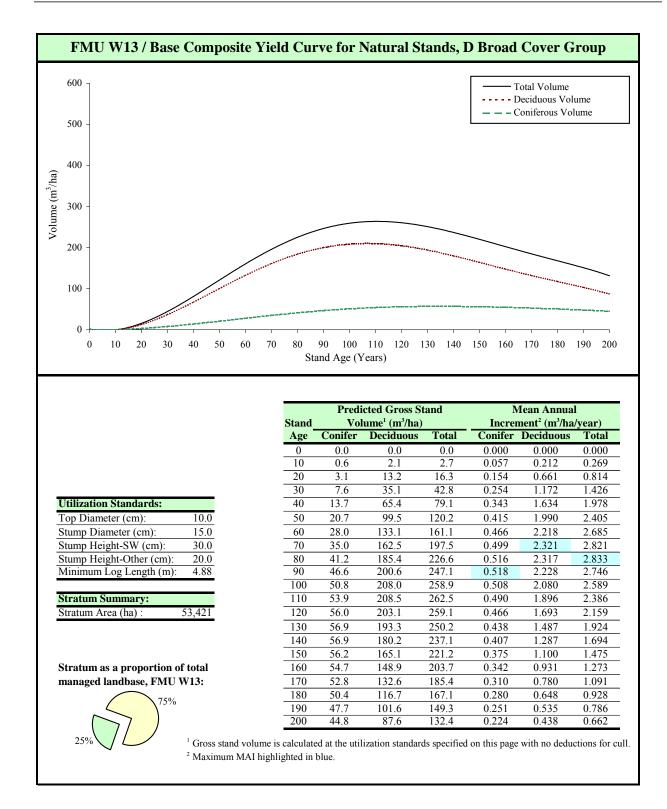
SW Stratum Base Managed Stand Yield Curves

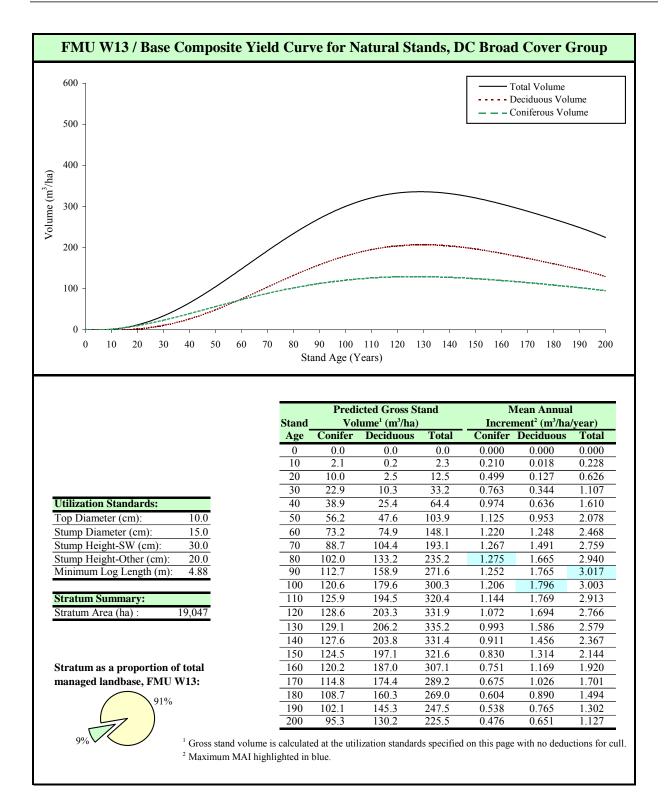


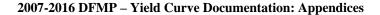
Inputs: Parameter Values a ₀ 5.1	Stand	Number	Predicted Gross Stand Volume ² (m ³ /ha) - Conifer			Mean Annual Increment ³ (m ³ /ha/year)			
	188E-06	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 3.2	2126678	0		0.0	0.0	0.0	0.000	0.000	0.000
k	50	10		0.8	0.8	0.8	0.077	0.080	0.083
Site Index Inputs F 10.0		20		5.9	6.1	6.3	0.293	0.305	0.314
М	13.8	30		17.7	18.4	18.9	0.588	0.612	0.630
G	16.6	40		36.4	37.9	39.0	0.910	0.948	0.974
		50		61.1	63.6	65.4	1.221	1.271	1.307
Utilization Standards:		60	3	89.8	93.5	96.1	1.497	1.558	1.602
Top Diameter (cm):	10.0	70		120.7	125.6	129.1	1.724	1.794	1.845
Stump Diameter (cm):	15.0	80		151.7	157.9	162.4	1.896	1.974	2.030
Stump Height-SW (cm):	30.0	90	3	181.3	188.7	194.1	2.015	2.097	2.156
Stump Height-Other (cm):	20.0	100	4	208.3	216.8	222.9	2.083	2.168	2.229
Minimum Log Length (m):	4.88	110	8	231.6	241.0	247.9	2.105	2.191	2.254
		120	11	250.8	261.0	268.4	2.090	2.175	2.237
Stratum Summary:		130	7	265.5	276.3	284.2	2.043	2.126	2.186
Total Number of Plots:	37	140		275.8	287.1	295.2	1.970	2.051	2.109
Stratum Area (ha) :	4,876	150		281.9	293.4	301.7	1.879	1.956	2.011
		160	1	283.9	295.5	303.9	1.775	1.847	1.899
Stratum as a proportion of total		170		282.5	294.0	302.3	1.662	1.729	1.778
managed landbase, FMU W13:		180		277.9	289.2	297.4	1.544	1.607	1.652
		190		270.7	281.7	289.7	1.425	1.483	1.525
98%		200		261.3	271.9	279.7	1.307	1.360	1.398

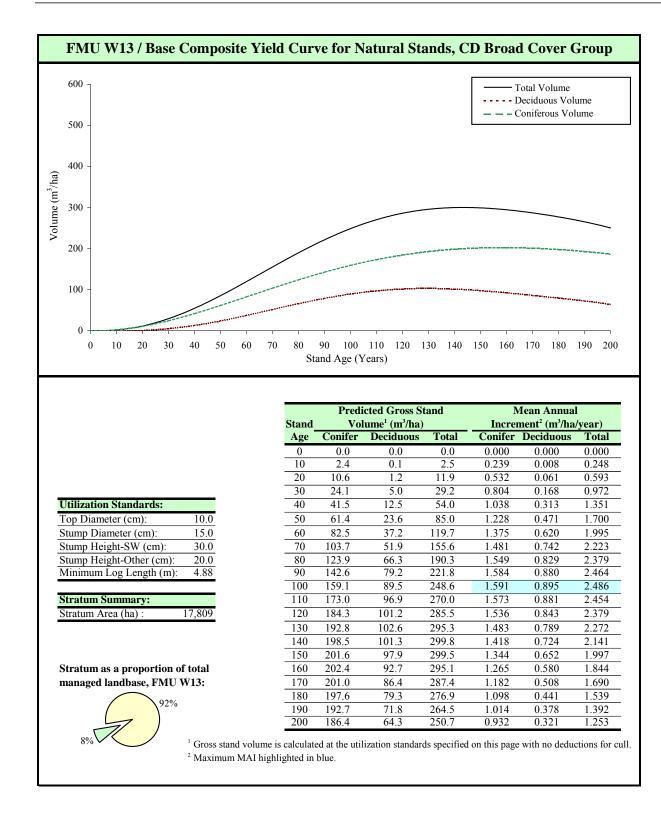
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

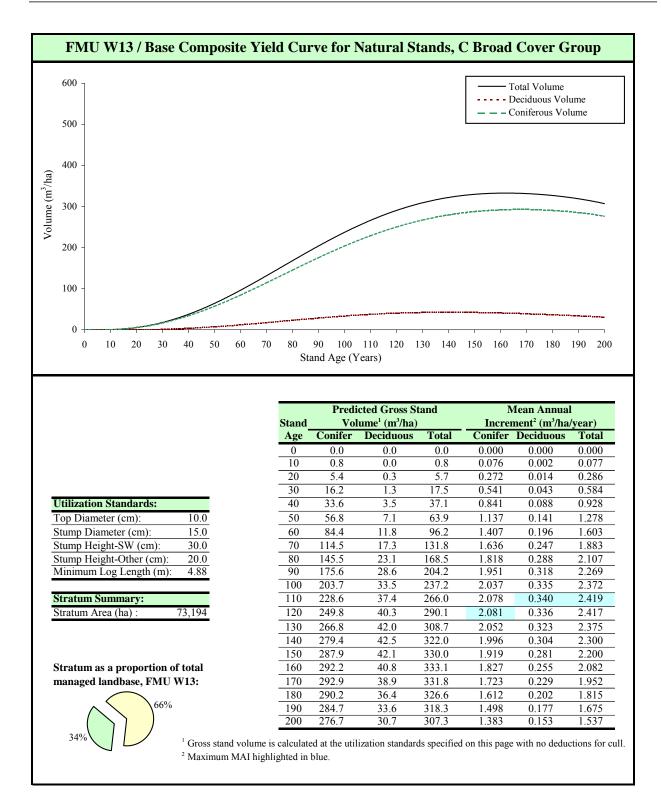
Inputs:			Predicted Gross Stand			Mean Annual			
Parameter Values a_0 -1.166E-08		Stand Number		Volume ² (m ³ /ha) - Deciduous			Increment ³ (m ³ /ha/year)		
Eqn: $2P+k$ a_1 9	.291E-10	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 5.	.8611161	0		0.0	0.0	0.0	0.000	0.000	0.000
k	30	10		0.0	0.0	0.0	0.000	0.000	0.000
Site Index Inputs F 13.0		20		0.0	0.1	0.1	0.000	0.003	0.006
М	15.7	30		0.1	0.5	1.0	0.002	0.016	0.032
G	18.8	40		0.3	1.9	3.8	0.007	0.047	0.094
		50		0.7	5.0	10.0	0.014	0.099	0.200
Utilization Standards:		60	3	1.5	10.3	20.8	0.025	0.172	0.347
Top Diameter (cm):	10.0	70		2.6	18.3	36.9	0.038	0.261	0.527
Stump Diameter (cm):	15.0	80		4.1	28.6	57.8	0.052	0.358	0.722
Stump Height-SW (cm):	30.0	90	3	5.9	40.9	82.6	0.066	0.455	0.917
Stump Height-Other (cm)	: 20.0	100	4	7.9	54.4	109.7	0.079	0.544	1.097
Minimum Log Length (m)): 4.88	110	8	9.9	68.1	137.4	0.090	0.619	1.249
		120	11	11.8	81.3	164.0	0.098	0.677	1.367
Stratum Summary:		130	7	13.5	93.1	187.8	0.104	0.716	1.445
Total Number of Plots:	37	140		14.9	103.0	207.8	0.106	0.736	1.484
Stratum Area (ha) :	4,876	150		16.0	110.6	223.1	0.107	0.737	1.487
		160	1	16.7	115.7	233.4	0.105	0.723	1.459
Stratum as a proportion of total		170		17.1	118.2	238.6	0.101	0.695	1.403
managed landbase, FMU	180		17.1	118.4	239.0	0.095	0.658	1.328	
\frown		190		16.9	116.5	235.1	0.089	0.613	1.237
98%		200		16.3	112.7	227.5	0.082	0.564	1.137

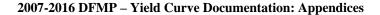

¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

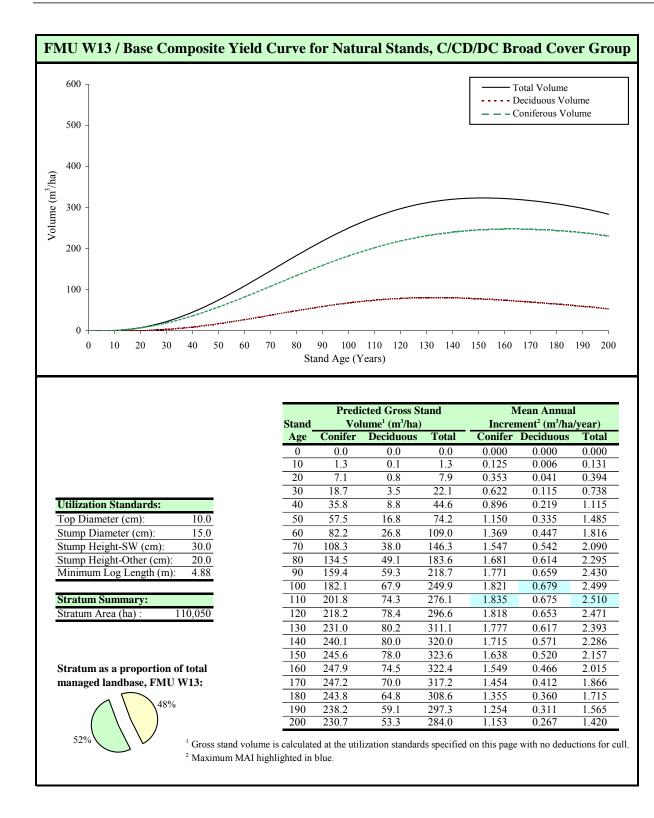


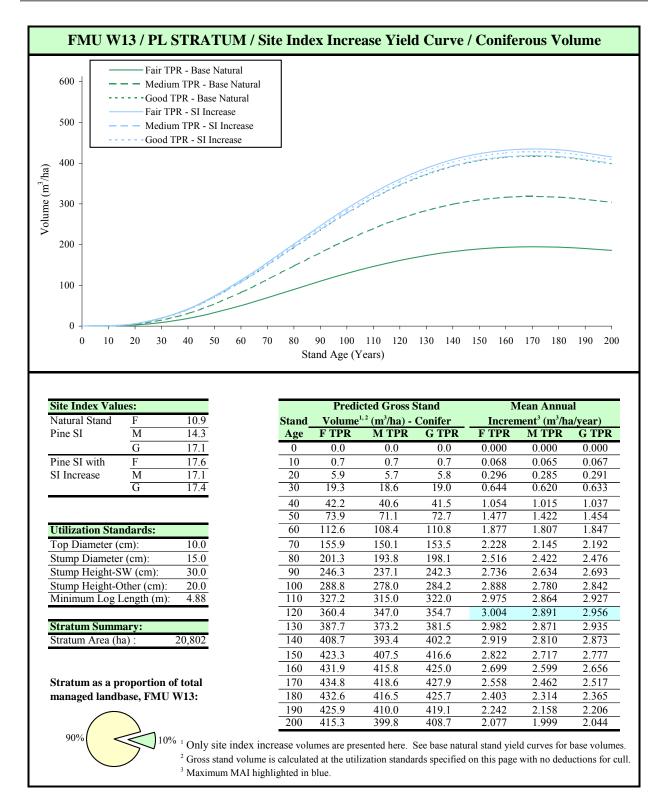

Appendix XIV. FMU W13 Base Composite Yield Curves



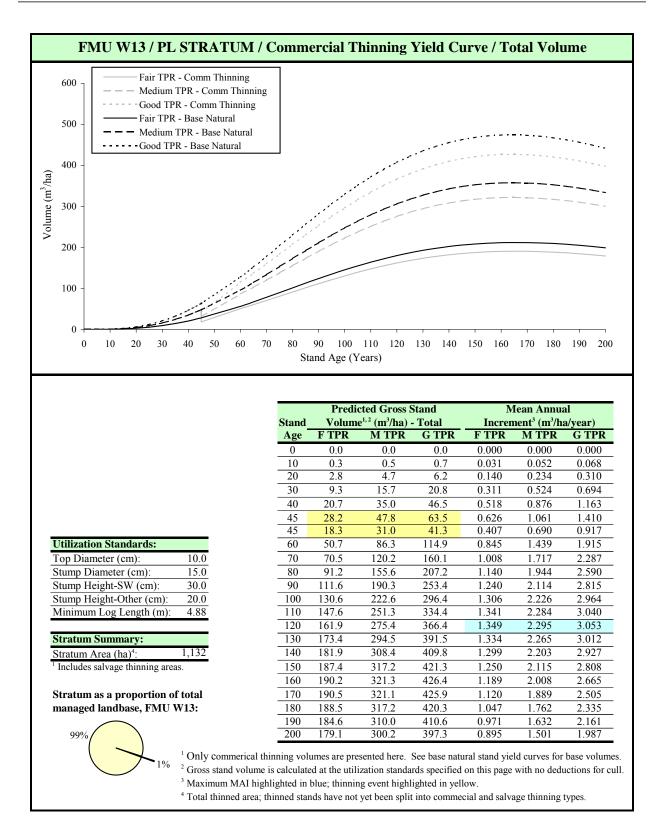




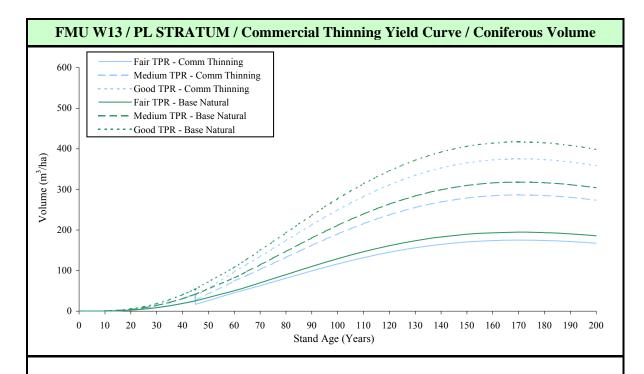




Appendix XV. FMU W13 Pine Site Index Increase Yield Curves



Appendix XVI. FMU W13 Thinning Yield Curves



PL Stratum Commercial Thinning Curves

	Predie	cted Gross S	Mean Annual						
Stand	Volume ¹	^{,2} (m³/ha) -	Conifer	Increment ³ (m ³ /ha/year)					
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR			
0	0.0	0.0	0.0	0.000	0.000	0.000			
10	0.3	0.5	0.7	0.030	0.050	0.065			
20	2.6	4.3	5.7	0.132	0.217	0.284			
30	8.6	14.1	18.5	0.288	0.471	0.617			
40	18.9	30.8	40.4	0.472	0.771	1.011			
45	25.5	41.7	54.7	0.567	0.927	1.215			
45	16.6	27.1	35.5	0.368	0.602	0.790			
60	45.4	74.2	97.2	0.756	1.236	1.620			
70	62.8	102.7	134.6	0.897	1.467	1.923			
80	81.1	132.6	173.8	1.014	1.657	2.172			
90	99.2	162.2	212.6	1.102	1.802	2.362			
100	116.3	190.2	249.3	1.163	1.902	2.493			
110	131.8	215.5	282.5	1.198	1.959	2.568			
120	145.2	237.4	311.2	1.210	1.978	2.593			
130	156.2	255.3	334.7	1.201	1.964	2.575			
140	164.6	269.2	352.8	1.176	1.923	2.520			
150	170.5	278.8	365.5	1.137	1.859	2.437			
160	174.0	284.5	372.9	1.087	1.778	2.331			
170	175.1	286.4	375.4	1.030	1.685	2.208			
180	174.2	284.9	373.5	0.968	1.583	2.075			
190	171.5	280.5	367.7	0.903	1.476	1.935			
200	167.3	273.5	358.6	0.836	1.368	1.793			

¹ Only commerical thinning volumes are presented here. See base natural stand yield curves for base volumes.
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

Utilization Standards: Top Diameter (cm):

Stump Diameter (cm): Stump Height-SW (cm):

Stratum Summary:

Stratum Area (ha)4:

99%

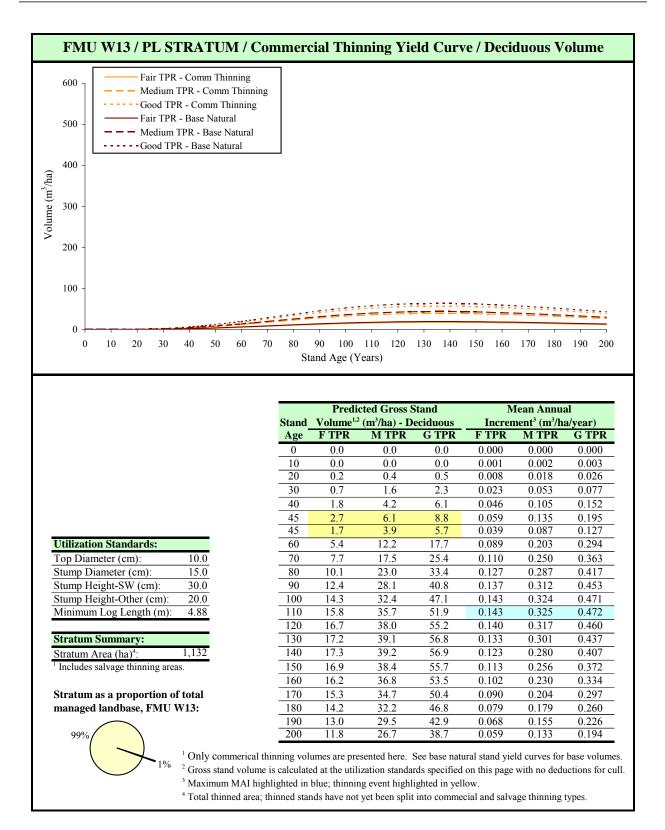
Stump Height-Other (cm):

Minimum Log Length (m):

¹ Includes salvage thinning areas.

Stratum as a proportion of total managed landbase, FMU W13:

10.0 15.0


30.0

20.0

4.88

1,132

SB Stratum Commercial Thinning Curves

Utilization Standards: Top Diameter (cm):

Stump Diameter (cm): Stump Height-SW (cm):

Stratum Summary:

Stratum Area (ha)4

100 %

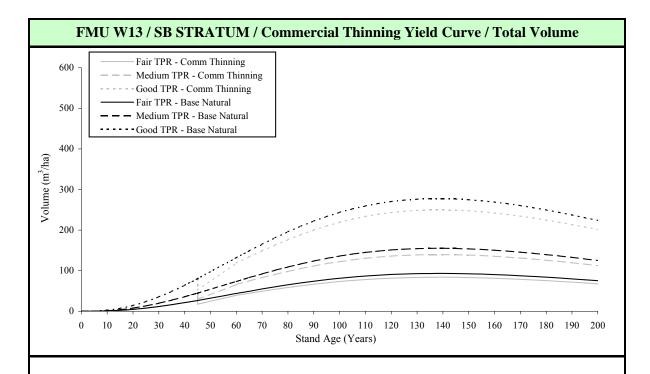
Stump Height-Other (cm):

Minimum Log Length (m):

Includes salvage thinning areas.

Stratum as a proportion of total managed landbase, FMU W13:

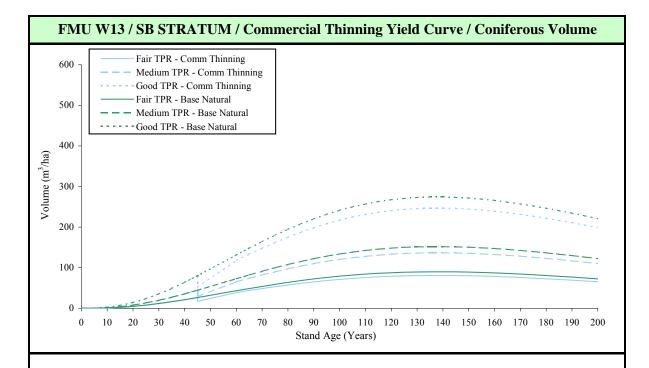
10.0 15.0


30.0

20.0

4.88

69



		cted Gross S	Mean Annual						
Stand_		$e^{1,2}$ (m ³ /ha) ·		Increment ³ (m ³ /ha/year)					
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR			
0	0.0	0.0	0.0	0.000	0.000	0.000			
10	0.8	1.4	2.5	0.083	0.141	0.254			
20	4.6	7.8	14.1	0.231	0.391	0.705			
30	11.6	19.6	35.4	0.387	0.654	1.179			
40	21.1	35.6	64.1	0.527	0.889	1.602			
45	26.5	44.6	80.3	0.588	0.991	1.785			
45	17.2	29.0	52.2	0.382	0.644	1.160			
60	39.2	65.9	118.6	0.654	1.099	1.977			
70	49.3	82.8	148.8	0.705	1.183	2.125			
80	58.6	98.2	176.2	0.732	1.227	2.203			
90	66.6	111.4	199.9	0.740	1.238	2.221			
100	73.1	122.2	219.1	0.731	1.222	2.191			
110	78.1	130.4	233.5	0.710	1.185	2.123			
120	81.4	135.9	243.2	0.679	1.132	2.027			
130	83.3	138.9	248.5	0.641	1.068	1.912			
140	83.8	139.6	249.7	0.599	0.997	1.784			
150	83.1	138.4	247.4	0.554	0.922	1.649			
160	81.3	135.4	242.1	0.508	0.846	1.513			
170	78.7	131.1	234.3	0.463	0.771	1.378			
180	75.5	125.6	224.6	0.419	0.698	1.248			
190	71.7	119.4	213.5	0.377	0.628	1.123			
200	67.6	112.6	201.3	0.338	0.563	1.006			

¹ Only commerical thinning volumes are presented here. See base natural stand yield curves for base volumes.
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

⁴ Total thinned area; thinned stands have not yet been split into commecial and salvage thinning types.

	Predic	cted Gross S	Mean Annual						
Stand	Volume ¹	,2 (m ³ /ha) -	Conifer	Incren	Increment ³ (m ³ /ha/year)				
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR			
0	0.0	0.0	0.0	0.000	0.000	0.000			
10	0.8	1.4	2.5	0.083	0.141	0.254			
20	4.6	7.8	14.1	0.231	0.390	0.705			
30	11.6	19.6	35.3	0.386	0.652	1.177			
40	20.9	35.4	63.9	0.524	0.885	1.599			
45	26.2	44.3	80.1	0.583	0.985	1.779			
45	17.0	28.8	52.0	0.379	0.640	1.157			
60	38.7	65.4	118.1	0.644	1.090	1.968			
70	48.4	81.9	147.9	0.692	1.170	2.112			
80	57.3	96.9	175.0	0.716	1.211	2.187			
90	64.9	109.8	198.3	0.722	1.220	2.203			
100	71.1	120.2	217.1	0.711	1.202	2.171			
110	75.7	128.0	231.2	0.688	1.164	2.102			
120	78.8	133.3	240.6	0.657	1.110	2.005			
130	80.5	136.1	245.7	0.619	1.047	1.890			
140	80.8	136.7	246.8	0.577	0.976	1.763			
150	80.0	135.3	244.4	0.534	0.902	1.629			
160	78.3	132.4	239.1	0.489	0.827	1.494			
170	75.8	128.1	231.4	0.446	0.754	1.361			
180	72.6	122.8	221.8	0.404	0.682	1.232			
190	69.0	116.7	210.8	0.363	0.614	1.109			
200	65.1	110.1	198.8	0.326	0.550	0.994			

¹ Only commerical thinning volumes are presented here. See base natural stand yield curves for base volumes.
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

⁴ Total thinned area; thinned stands have not yet been split into commecial and salvage thinning types.

Utilization Standards: Top Diameter (cm):

Stump Diameter (cm): Stump Height-SW (cm):

Stratum Summary:

Stratum Area (ha)4

100

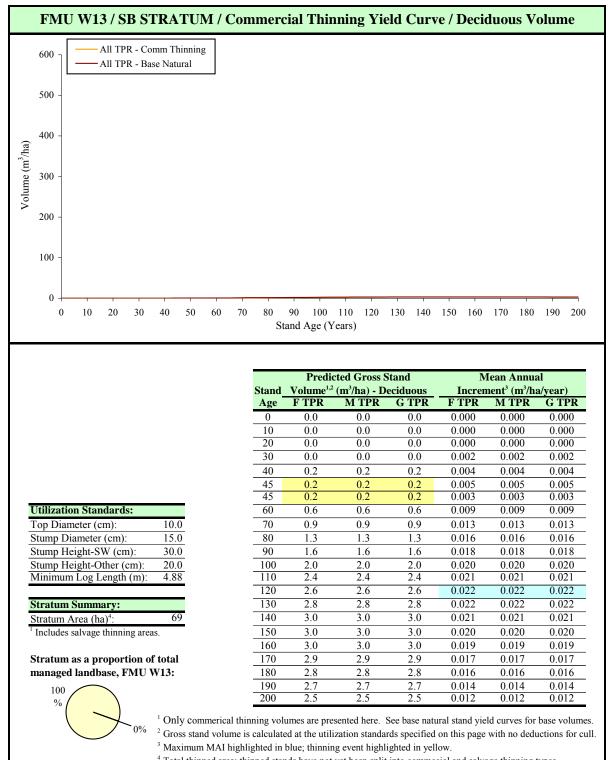
Stump Height-Other (cm):

Minimum Log Length (m):

Includes salvage thinning areas.

Stratum as a proportion of total managed landbase, FMU W13:

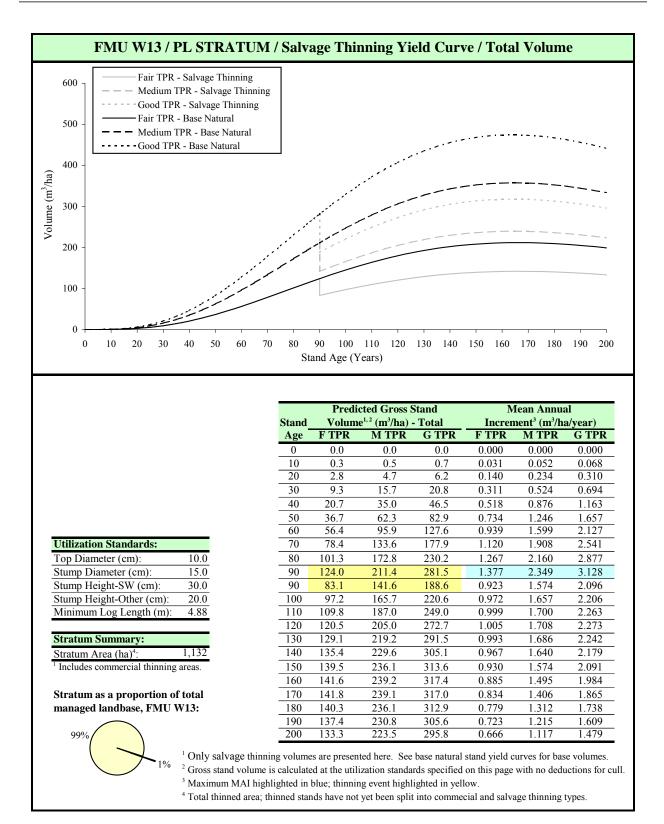
10.0 15.0

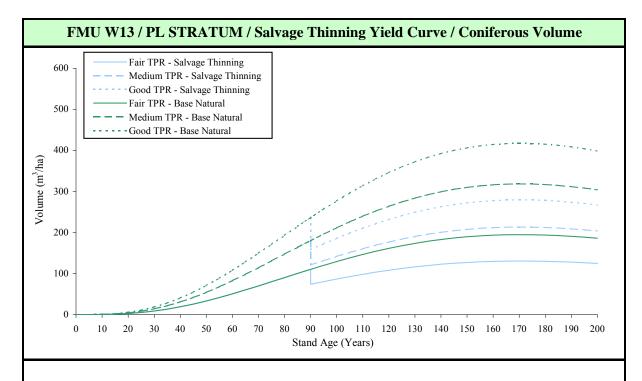

30.0

20.0

4.88

69





PL Stratum Salvage Thinning Curves

	Predic	cted Gross S	Mean Annual						
Stand	Volume ¹	^{,2} (m ³ /ha) -	Conifer	Increment ³ (m ³ /ha/year)					
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR			
0	0.0	0.0	0.0	0.000	0.000	0.000			
10	0.3	0.5	0.7	0.030	0.050	0.065			
20	2.6	4.3	5.7	0.132	0.217	0.284			
30	8.6	14.1	18.5	0.288	0.471	0.617			
40	18.9	30.8	40.4	0.472	0.771	1.011			
50	33.1	54.1	70.9	0.661	1.081	1.417			
60	50.4	82.4	108.0	0.840	1.373	1.800			
70	69.8	114.1	149.6	0.997	1.630	2.137			
80	90.1	147.3	193.1	1.126	1.841	2.414			
90	110.2	180.2	236.2	1.225	2.002	2.625			
90	73.8	120.7	158.3	0.820	1.342	1.759			
100	86.6	141.6	185.6	0.866	1.416	1.856			
110	98.1	160.4	210.3	0.892	1.458	1.912			
120	108.1	176.7	231.7	0.901	1.473	1.931			
130	116.3	190.1	249.2	0.894	1.462	1.917			
140	122.5	200.4	262.7	0.875	1.431	1.876			
150	126.9	207.6	272.1	0.846	1.384	1.814			
160	129.5	211.8	277.6	0.809	1.324	1.735			
170	130.4	213.2	279.5	0.767	1.254	1.644			
180	129.7	212.1	278.1	0.721	1.178	1.545			
190	127.7	208.8	273.7	0.672	1.099	1.441			
200	124.5	203.6	267.0	0.623	1.018	1.335			

¹ Only salvage thinning volumes are presented here. See base natural stand yield curves for base volumes.
 ² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

⁴ Total thinned area; thinned stands have not yet been split into commecial and salvage thinning types.

Utilization Standards:

Stump Height-SW (cm):

Stump Height-Other (cm):

Minimum Log Length (m):

¹ Includes commercial thinning areas.

Stratum as a proportion of total managed landbase, FMU W13:

Top Diameter (cm): Stump Diameter (cm):

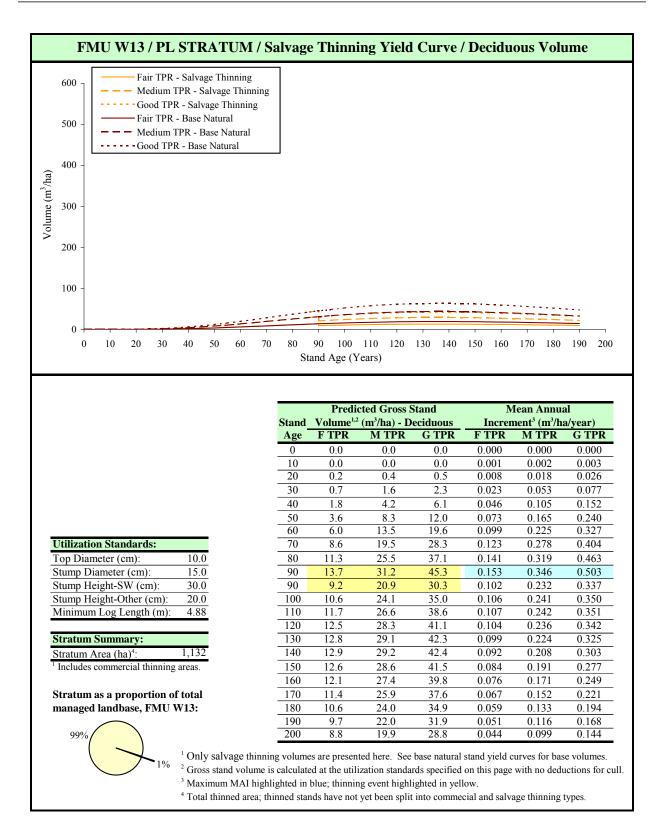
Stratum Summary:

Stratum Area (ha)42

99

10.0

15.0


30.0

20.0

4.88

1,132

SB Stratum Salvage Thinning Curves

Utilization Standards: Top Diameter (cm):

Stump Diameter (cm): Stump Height-SW (cm):

Stratum Summary:

Stratum Area (ha)4

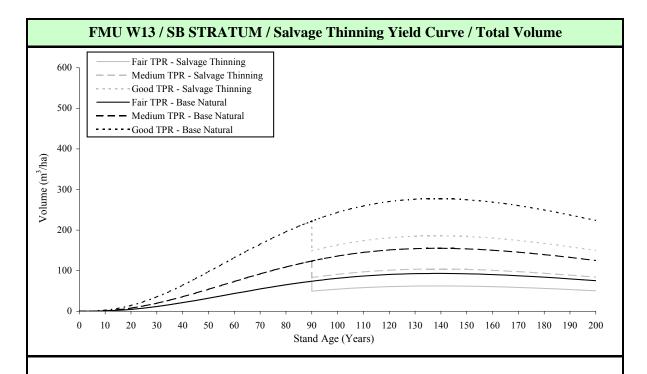
100

Stump Height-Other (cm):

Minimum Log Length (m):

¹ Includes commercial thinning areas. Stratum as a proportion of total managed landbase, FMU W13:

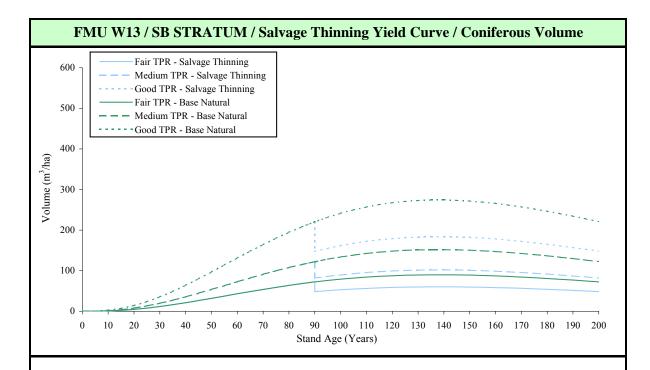
10.0 15.0


30.0

20.0

4.88

69



	Predic	cted Gross S	Mean Annual						
Stand_	Volume	$e^{1,2}$ (m ³ /ha) ·	Total	Increment ³ (m ³ /ha/year)					
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR			
0	0.0	0.0	0.0	0.000	0.000	0.000			
10	0.8	1.4	2.5	0.083	0.141	0.254			
20	4.6	7.8	14.1	0.231	0.391	0.705			
30	11.6	19.6	35.4	0.387	0.654	1.179			
40	21.1	35.6	64.1	0.527	0.889	1.602			
50	32.1	54.0	97.2	0.642	1.080	1.945			
60	43.6	73.3	131.8	0.727	1.221	2.197			
70	54.8	92.0	165.3	0.783	1.314	2.361			
80	65.1	109.1	195.8	0.814	1.363	2.448			
90	74.0	123.8	222.1	0.822	1.376	2.468			
90	49.6	83.0	148.8	0.551	0.922	1.654			
100	54.4	91.0	163.1	0.544	0.910	1.631			
110	58.1	97.1	173.9	0.528	0.882	1.580			
120	60.6	101.2	181.1	0.505	0.843	1.509			
130	62.0	103.4	185.0	0.477	0.795	1.423			
140	62.4	103.9	185.9	0.446	0.742	1.328			
150	61.8	103.0	184.2	0.412	0.687	1.228			
160	60.5	100.8	180.2	0.378	0.630	1.126			
170	58.6	97.6	174.4	0.345	0.574	1.026			
180	56.2	93.5	167.2	0.312	0.520	0.929			
190	53.4	88.9	158.9	0.281	0.468	0.836			
200	50.3	83.8	149.8	0.252	0.419	0.749			

¹ Only salvage thinning volumes are presented here. See base natural stand yield curves for base volumes.
 ² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

⁴ Total thinned area; thinned stands have not yet been split into commecial and salvage thinning types.

	Predic	ted Gross	Mean Annual					
Stand_	Volume ^{1,}	2 (m ³ /ha) -	Conifer	Increment ³ (m ³ /ha/year)				
Age	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR		
0	0.0	0.0	0.0	0.000	0.000	0.000		
10	0.8	1.4	2.5	0.083	0.141	0.254		
20	4.6	7.8	14.1	0.231	0.390	0.705		
30	11.6	19.6	35.3	0.386	0.652	1.177		
40	20.9	35.4	63.9	0.524	0.885	1.599		
50	31.7	53.7	96.9	0.635	1.073	1.938		
60	43.0	72.6	131.2	0.716	1.211	2.186		
70	53.8	91.0	164.3	0.769	1.300	2.347		
80	63.7	107.7	194.4	0.796	1.346	2.430		
90	72.2	122.0	220.3	0.802	1.356	2.448		
90	48.3	81.7	147.6	0.537	0.908	1.640		
100	52.9	89.5	161.6	0.529	0.895	1.616		
110	56.4	95.3	172.1	0.512	0.866	1.565		
120	58.7	99.2	179.1	0.489	0.827	1.493		
130	59.9	101.3	182.9	0.461	0.779	1.407		
140	60.2	101.7	183.7	0.430	0.727	1.312		
150	59.6	100.8	181.9	0.397	0.672	1.213		
160	58.3	98.6	178.0	0.364	0.616	1.112		
170	56.4	95.4	172.2	0.332	0.561	1.013		
180	54.1	91.4	165.1	0.300	0.508	0.917		
190	51.4	86.9	156.9	0.271	0.457	0.826		
200	48.5	82.0	148.0	0.242	0.410	0.740		

¹ Only salvage thinning volumes are presented here. See base natural stand yield curves for base volumes.
 ² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
 ³ Maximum MAI highlighted in blue; thinning event highlighted in yellow.

⁴ Total thinned area; thinned stands have not yet been split into commecial and salvage thinning types.

Utilization Standards: Top Diameter (cm):

Stump Diameter (cm): Stump Height-SW (cm):

Stratum Summary:

Stratum Area (ha)42

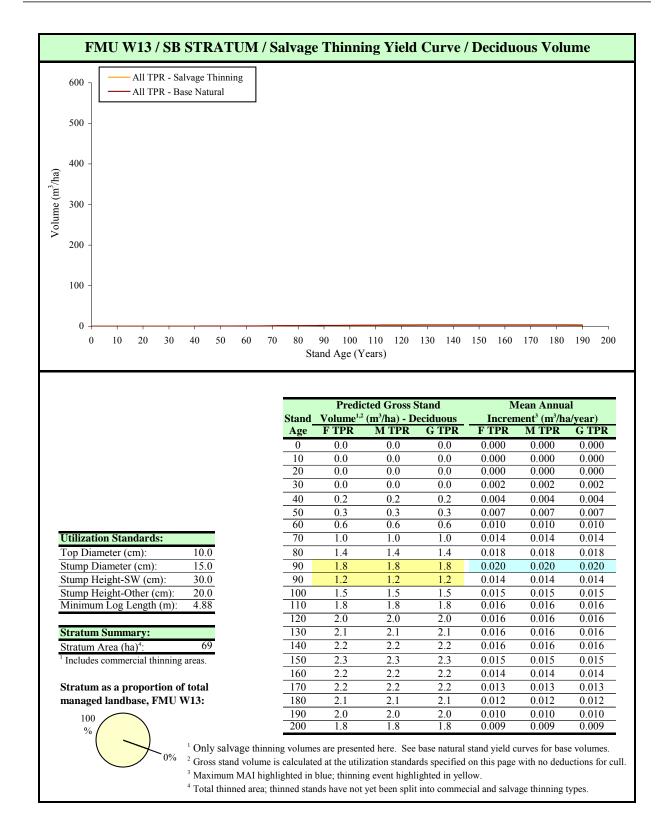
100

Stump Height-Other (cm):

Minimum Log Length (m):

¹ Includes commercial thinning areas. Stratum as a proportion of total managed landbase, FMU W13:

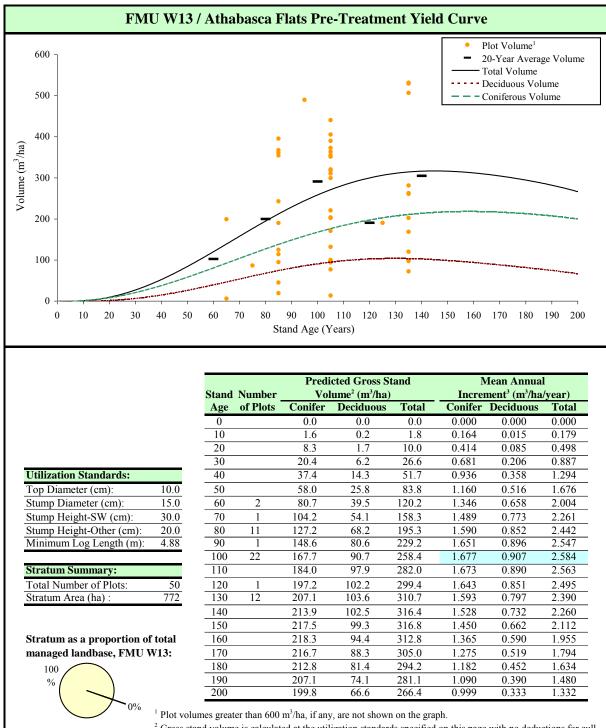
10.0 15.0

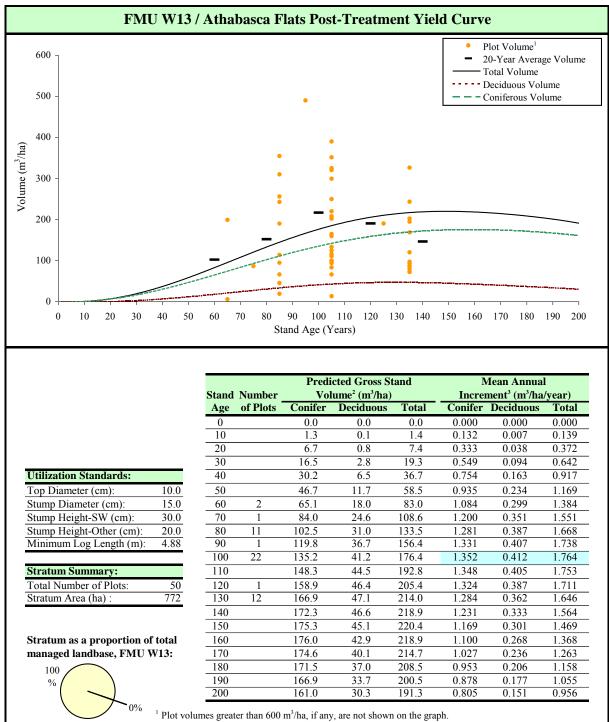

30.0

20.0

4.88

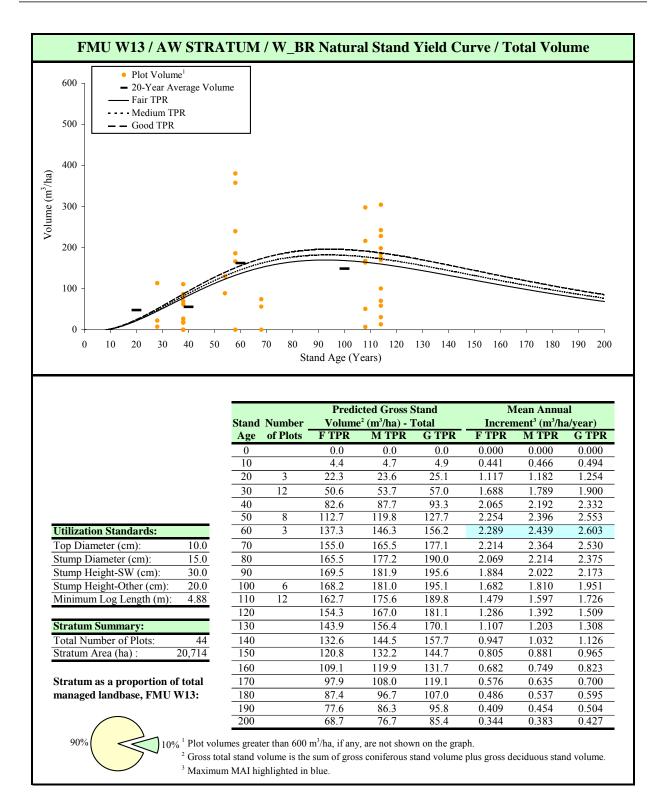
69



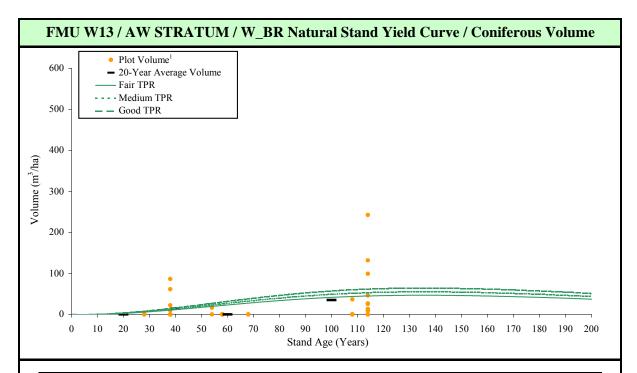

Appendix XVII. FMU W13 Athabasca Flats Yield Curves

² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.

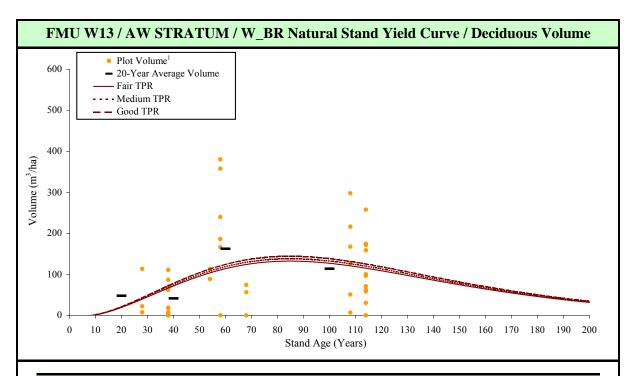
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.



Appendix XVIII. FMU W13 Aspen Subunit Yield Curves



AW Whitecourt/Blue Ridge Subunit Natural Stand Curves



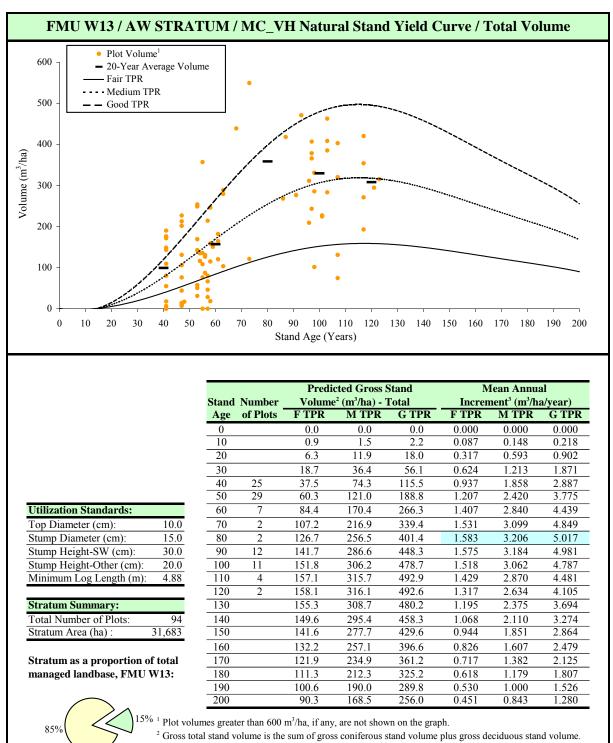
2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a₀+a₁*SI*(age)^be^(-age/k)

Inputs: Parameter Values a ₀ -2.337E-04	Stand	Number		cted Gross S (m³/ha) - Co			lean Annua nent ³ (m³/ha	
Eqn: $2P+k$ a_1 1.086E-04	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPF
b 2.7202683	0		0.0	0.0	0.0	0.000	0.000	0.000
k 50	10		0.5	0.6	0.7	0.048	0.056	0.066
Site Index Inputs F 12.4	20	3	2.6	3.0	3.5	0.129	0.152	0.177
M 14.2	30	12	6.4	7.5	8.7	0.212	0.250	0.291
G 16.2	40		11.4	13.4	15.7	0.285	0.335	0.391
	50	8	17.1	20.2	23.5	0.342	0.403	0.470
Utilization Standards:	60	3	23.0	27.1	31.6	0.383	0.452	0.527
Top Diameter (cm): 10.0	70		28.6	33.7	39.4	0.409	0.482	0.562
Stump Diameter (cm): 15.0	80		33.7	39.7	46.3	0.421	0.497	0.579
Stump Height-SW (cm): 30.0	90		38.0	44.8	52.3	0.423	0.498	0.581
Stump Height-Other (cm): 20.0	100	6	41.5	48.9	57.0	0.415	0.489	0.570
Minimum Log Length (m): 4.88	110	12	44.0	51.8	60.5	0.400	0.471	0.550
	120		45.6	53.8	62.7	0.380	0.448	0.523
Stratum Summary:	130		46.5	54.7	63.9	0.357	0.421	0.491
Total Number of Plots: 44	140		46.5	54.8	64.0	0.332	0.392	0.457
Stratum Area (ha) : 20,714	150		46.0	54.2	63.2	0.306	0.361	0.421
	160		44.9	52.9	61.7	0.280	0.330	0.385
Stratum as a proportion of total	170		43.3	51.0	59.5	0.255	0.300	0.350
managed landbase, FMU W13:	180		41.4	48.8	56.9	0.230	0.271	0.316
	190		39.3	46.3	54.0	0.207	0.244	0.284
	200		37.0	43.6	50.8	0.185	0.218	0.254

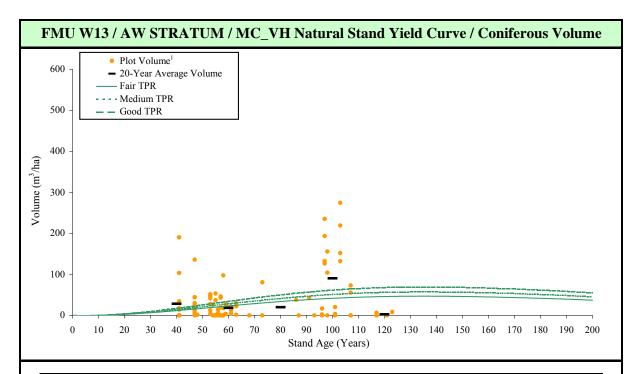
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. ³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a₀+a₁*SI*(age)^be^(-age/k)

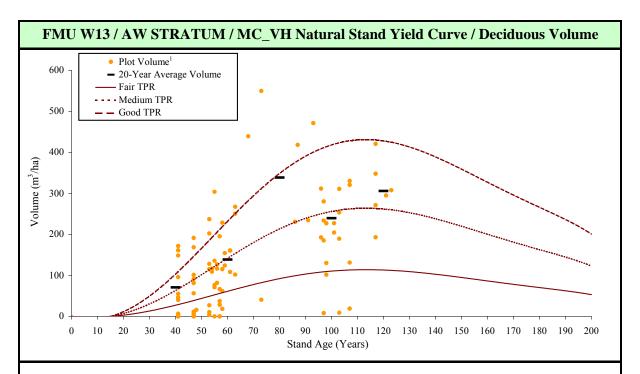
Inputs: Parameter Values a ₀ 5.988E-0	3 Stand	Number		cted Gross S m³/ha) - Dec			lean Annua nent ³ (m³/ha	
Eqn: $2P+k$ a_1 $1.636E-0$		of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
b 2.811406	8 0		0.0	0.0	0.0	0.000	0.000	0.000
k 3	0 10		3.9	4.1	4.3	0.393	0.410	0.428
Site Index Inputs F 15.	1 20	3	19.8	20.6	21.5	0.988	1.030	1.077
M 17.	4 30	12	44.3	46.2	48.2	1.476	1.539	1.608
G 19.	8 40		71.2	74.3	77.6	1.781	1.857	1.940
	50	8	95.6	99.7	104.1	1.912	1.993	2.083
Utilization Standards:	60	3	114.3	119.2	124.6	1.906	1.987	2.076
Top Diameter (cm): 10.	0 70		126.4	131.8	137.7	1.805	1.882	1.967
Stump Diameter (cm): 15.	0 80		131.8	137.4	143.6	1.648	1.718	1.795
Stump Height-SW (cm): 30.	0 90		131.5	137.1	143.3	1.461	1.524	1.592
Stump Height-Other (cm): 20.	0 100	6	126.7	132.1	138.1	1.267	1.321	1.381
Minimum Log Length (m): 4.8	8 110	12	118.7	123.8	129.3	1.079	1.125	1.176
	120		108.6	113.3	118.4	0.905	0.944	0.986
Stratum Summary:	130		97.5	101.6	106.2	0.750	0.782	0.817
Total Number of Plots: 4	4 140		86.0	89.7	93.7	0.614	0.641	0.670
Stratum Area (ha) : 20,71	4 150		74.8	78.0	81.5	0.499	0.520	0.544
	160		64.3	67.0	70.0	0.402	0.419	0.438
Stratum as a proportion of total	170		54.6	57.0	59.5	0.321	0.335	0.350
managed landbase, FMU W13:	180		46.0	47.9	50.1	0.255	0.266	0.278
	190		38.3	40.0	41.8	0.202	0.210	0.220
	200		31.7	33.1	34.6	0.159	0.165	0.173


⁶ ¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.

 2 Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull. 3 Maximum MAI highlighted in blue.

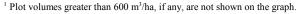

AW McLeod/Virginia Hills Subunit Natural Stand Curves

³ Maximum MAI highlighted in blue.


2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = a₀+a₁*SI*(age)^be^(-age/k)

Inputs:						cted Gross S	Mean Annual			
Parameter Valu	les a_0	-2.337E-04	Stand	Number		(m ³ /ha) - Co			nent ³ (m ³ /h	
Eqn: 2P+k	a_1	1.086E-04	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
	b	2.7202683	0		0.0	0.0	0.0	0.000	0.000	0.000
	k	50	10		0.5	0.6	0.7	0.048	0.059	0.071
Site Index Inpu	ts F	12.4	20		2.6	3.2	3.8	0.129	0.158	0.191
	М	14.7	30		6.4	7.8	9.4	0.213	0.260	0.314
	G	17.3	40	25	11.4	14.0	16.9	0.286	0.349	0.422
			50	29	17.2	21.0	25.4	0.343	0.420	0.508
Utilization Sta	ndards	s:	60	7	23.1	28.2	34.1	0.385	0.470	0.569
Top Diameter (cm):	10.0	70	2	28.7	35.1	42.5	0.411	0.502	0.607
Stump Diamete	er (cm):	15.0	80	2	33.8	41.4	50.0	0.423	0.517	0.625
Stump Height-S	SW (cm	n): 30.0	90	12	38.2	46.7	56.4	0.424	0.519	0.627
Stump Height-	Other (c	cm): 20.0	100	11	41.6	50.9	61.5	0.416	0.509	0.615
Minimum Log	Length	(m): 4.88	110	4	44.2	54.0	65.3	0.402	0.491	0.593
			120	2	45.8	56.0	67.7	0.382	0.467	0.564
Stratum Summ	nary:		130		46.6	57.0	68.9	0.359	0.439	0.530
Total Number of	of Plots	: 94	140		46.7	57.1	69.0	0.334	0.408	0.493
Stratum Area (l	ha) :	31,683	150		46.1	56.4	68.2	0.308	0.376	0.455
			160		45.0	55.0	66.5	0.281	0.344	0.416
Stratum as a p	roport	ion of total	170		43.5	53.2	64.3	0.256	0.313	0.378
nanaged land	base, F	MU W13:	180		41.6	50.8	61.5	0.231	0.282	0.341
- -	_		190		39.4	48.2	58.3	0.208	0.254	0.307
		`	200		37.1	45.4	54.9	0.186	0.227	0.274

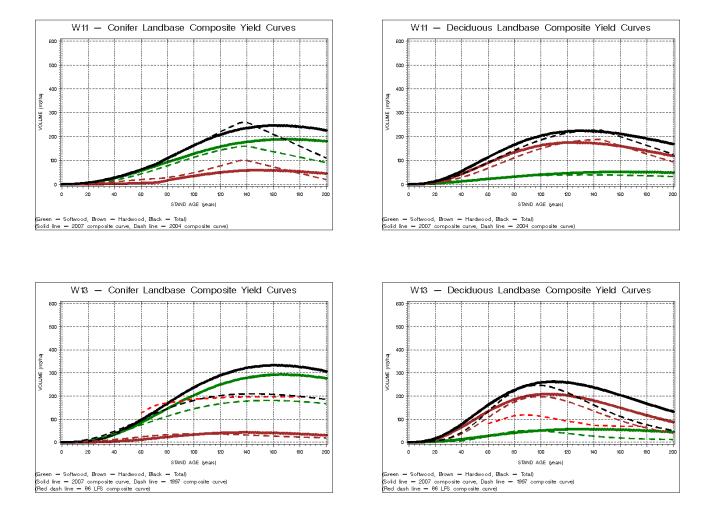
¹ Plot volumes greater than 600 m³/ha, if any, are not shown on the graph.


² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue.

2-PARAMETER EQUATION WITH CONSTANT (2P+k): volume = $a_0 + a_1 * SI*(age)^b e^{(-age/k)}$

Inputs:				Predicted Gross Stand			Mean Annual			
Parameter Values $a_0 -5.765E-04$				Number	Volume ² (m ³ /ha) - Deciduous			Increment ³ (m ³ /ha/year)		
Eqn: 2P+k	a_1	4.558E-05	Age	of Plots	F TPR	M TPR	G TPR	F TPR	M TPR	G TPR
	b	3.7568663	0		0.0	0.0	0.0	0.000	0.000	0.000
	k	30	10		0.4	0.9	1.5	0.039	0.090	0.147
Site Index Inputs F 14.7		20		3.8	8.7	14.2	0.188	0.435	0.710	
	М	17.5	30		12.3	28.6	46.7	0.411	0.953	1.557
	G	20.5	40	25	26.1	60.4	98.6	0.651	1.509	2.465
			50	29	43.2	100.0	163.4	0.863	2.000	3.268
Utilization Standards:			60	7	61.4	142.2	232.2	1.023	2.369	3.870
Top Diameter (cm):	10.0	70	2	78.4	181.8	296.9	1.121	2.597	4.242
Stump Diameter (cm): 15.0			80	2	92.8	215.1	351.4	1.160	2.688	4.392
Stump Height-SW (cm): 30.0			90	12	103.5	239.9	391.9	1.150	2.665	4.354
Stump Height-Other (cm): 20.0			100	11	110.2	255.4	417.2	1.102	2.554	4.172
Minimum Log Length (m): 4.88			110	4	113.0	261.8	427.6	1.027	2.380	3.887
			120	2	112.2	260.1	424.9	0.935	2.167	3.541
Stratum Summ	nary:		130		108.6	251.7	411.2	0.836	1.936	3.163
Total Number of	of Plots:	94	140		102.8	238.3	389.3	0.735	1.702	2.780
Stratum Area (ha) : 31,683			150		95.5	221.2	361.4	0.637	1.475	2.410
·			160		87.2	202.0	330.0	0.545	1.263	2.063
Stratum as a proportion of total			170		78.5	181.8	297.0	0.462	1.069	1.747
managed landbase, FMU W13:			180		69.7	161.5	263.8	0.387	0.897	1.465
<u> </u>	-		190		61.2	141.7	231.6	0.322	0.746	1.219
		15%	200		53.2	123.1	201.2	0.266	0.616	1.006

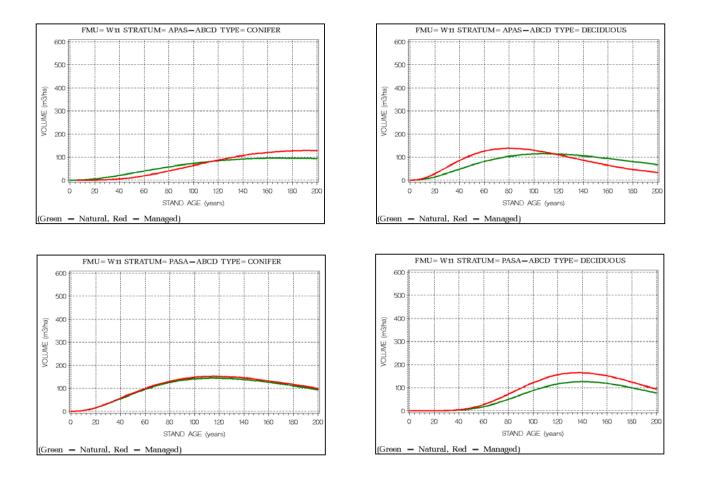
² Gross stand volume is calculated at the utilization standards specified on this page with no deductions for cull.
³ Maximum MAI highlighted in blue.


Appendix XIX. Yield Curve Comparisons

Yield curve comparisons show a variety of curves graphically overlaid for comparison purposes. Composite curves from the current plan are shown against composite curves prepared for previous plans. In addition, the yield curves from Appendices IX to XVIII are graphed together by FMU and DFMP yield stratum for comparison purposes. Note that curves only show total gross merchantable stand volume. For FMU W11, only the APAS_ABCD and the PASA_ABCD yield strata have more than one type of yield curve, therefore these are the only DFMP yield strata presented. Composite natural stand yield curves (deciduous landbase, coniferous landbase and combined landbase) for each FMU are also presented side-by-side for comparative purposes. For FMU W13, pine curves developed for the PL DFMP yield stratum are shown relative to GYPSY simulations.

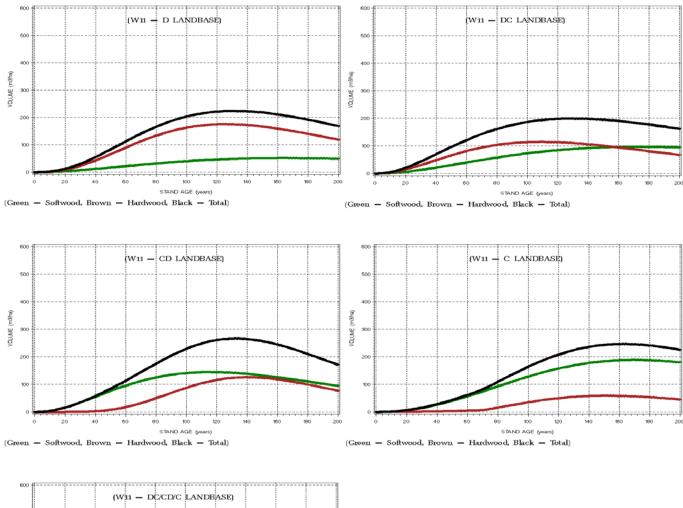
Current DFMP vs. Past FMPs

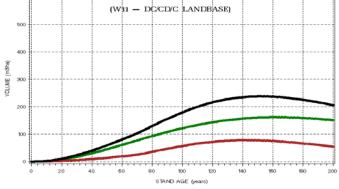
In past plans, composite curves were presented for the coniferous (C, CD, DC) and deciduous (D) landbases only, and not separated by broad cover group. As such, comparisons are done at that level.


For FMU W11, the 2007 composite curves are based on the natural stand yield curves and landbase areas presented in this document. The 2004 composite curves are based on natural stand yield curves and landbase areas presented in the FMU W11 Preliminary Forest Management Plan (Millar Western 2004e).

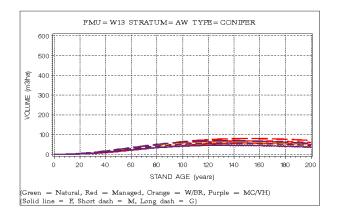
For FMU W13, the 2007 composite curves are based on the natural stand yield curves and landbase areas presented in this document. The 1997 composite curves are based on natural stand yield curves and landbase areas used in developing the 1997 DFMP for FMU W11 (Millar Western 2000). In the 1997 DFMP, composite yields for coniferous volume on the coniferous landbase and deciduous volume on the deciduous landbase were also included. These are included as the 1986 LFS composite curves.

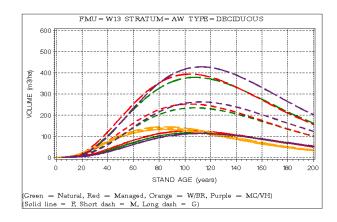
FMU W11 Yield Curves by DFMP Yield Stratum

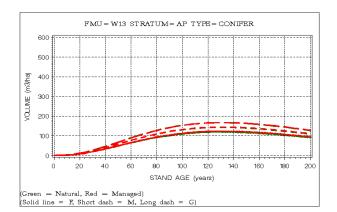


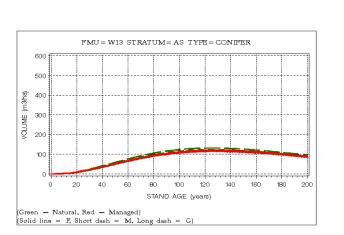

The remaining DMFP yield strata for FMU W11 only have base natural stand yield curves, and as such, are not presented here.

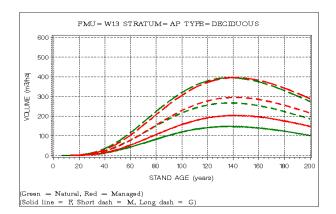
FMU W11 Composite Yield Curves: Broad Cover Group (D, DC, CD, C) and Coniferous Landbase (DC/CD/C Combined)

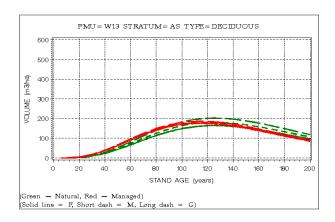


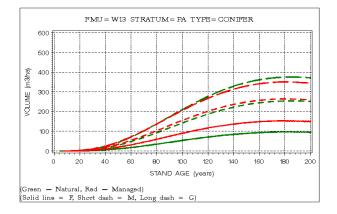

(Green - Softwood, Brown - Hardwood, Black - Total)

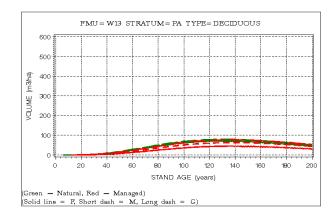


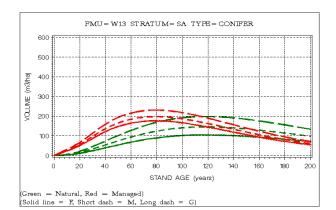

FMU W13 Yield Curves by DFMP Yield Stratum

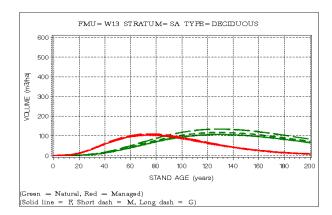


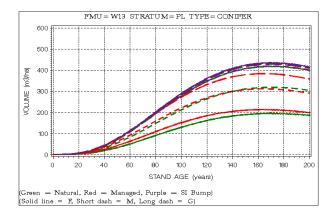


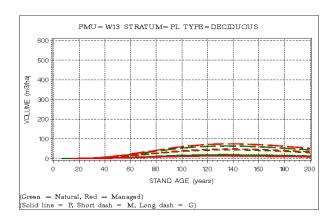


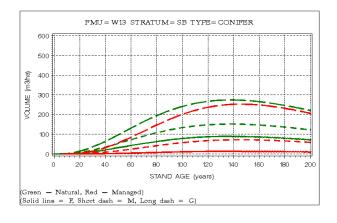


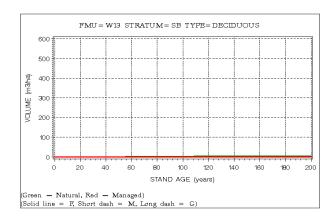


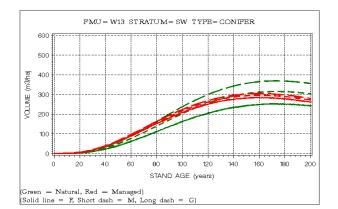


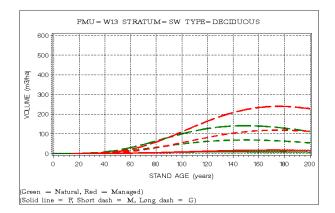


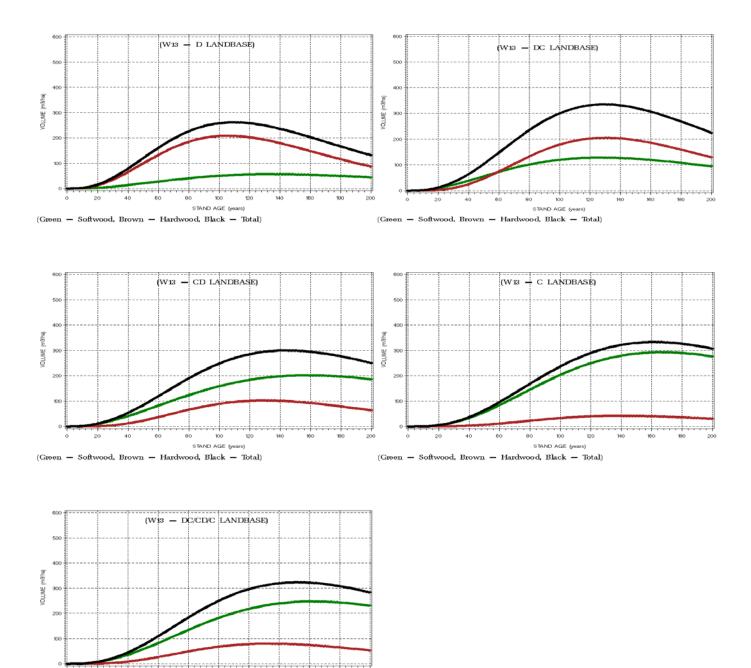




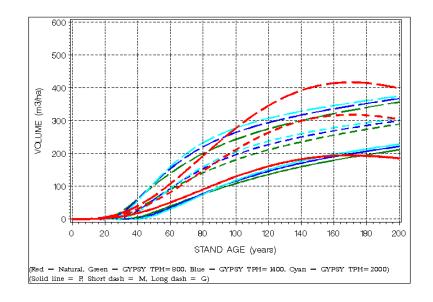


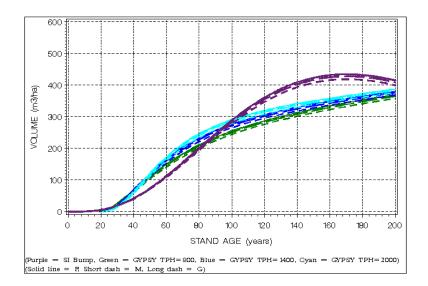




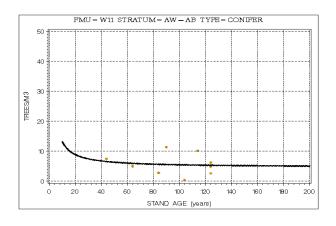


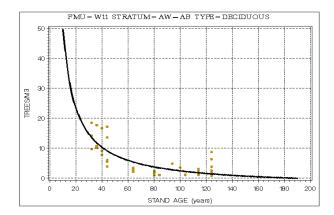
FMU W13 Composite Yield Curves: Broad Cover Group (D, DC, CD, C) and Coniferous Landbase (DC/CD/C Combined)

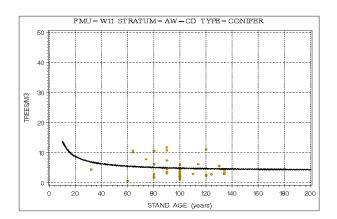


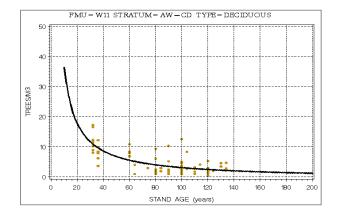

STAND AGE (years) (Green - Softwood, Brown - Hardwood, Black - Total)

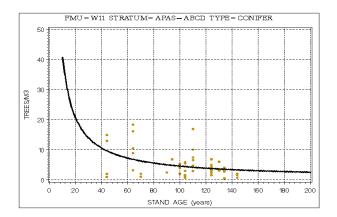
FMU W13 Pine Yield Curves vs. GYPSY Simulations

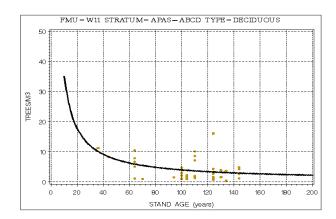


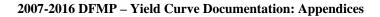

Appendix XX. Piece Size Curves

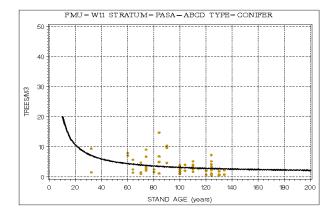


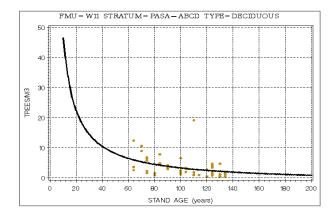

FMU W11 Piece Size Curves

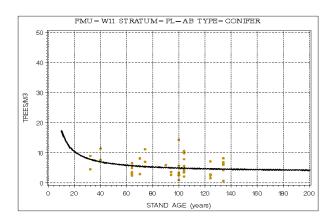


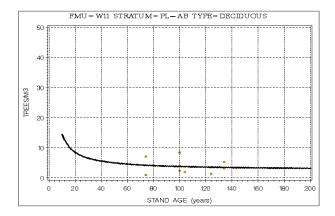


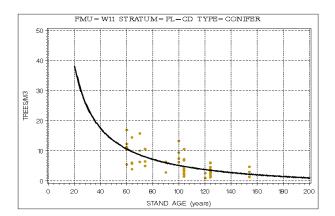


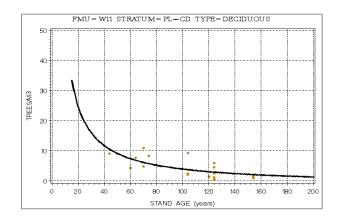


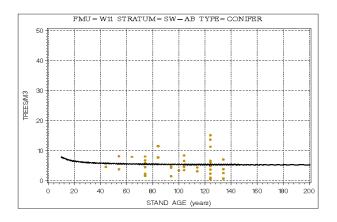


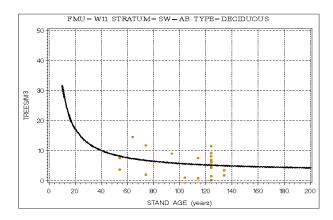


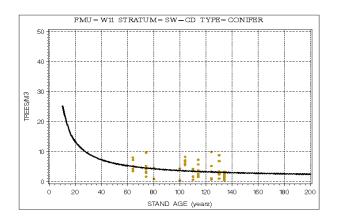


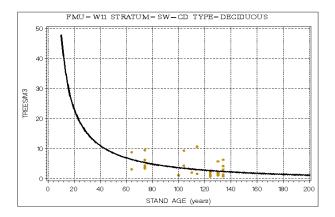


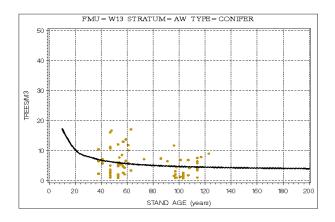


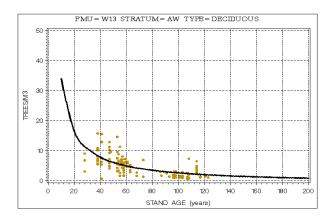


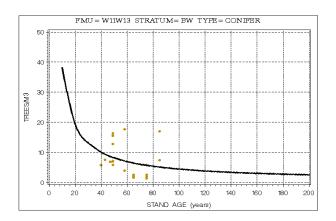


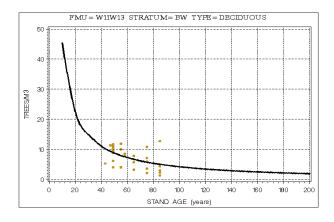


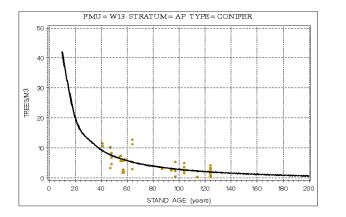


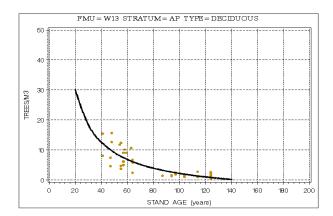


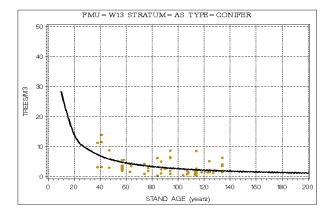


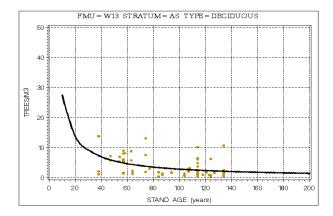


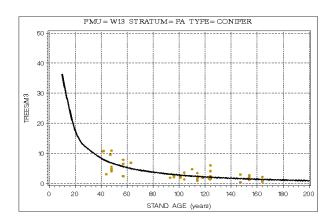

FMU W13 Piece Size Curves

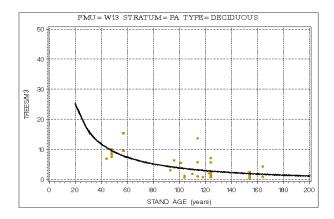


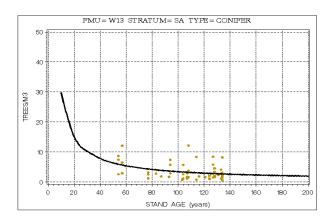


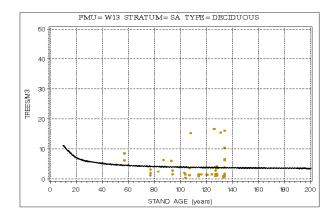


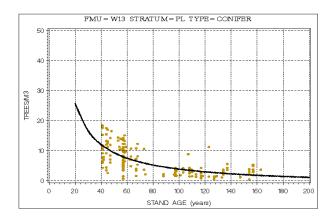


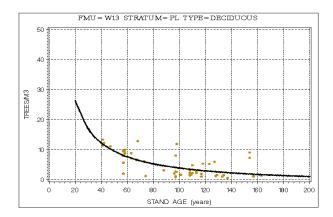


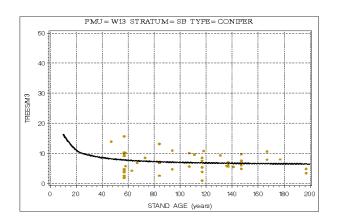


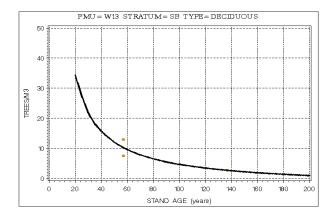


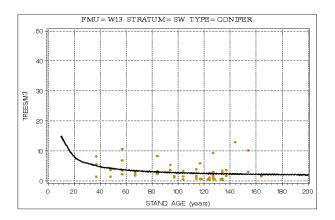




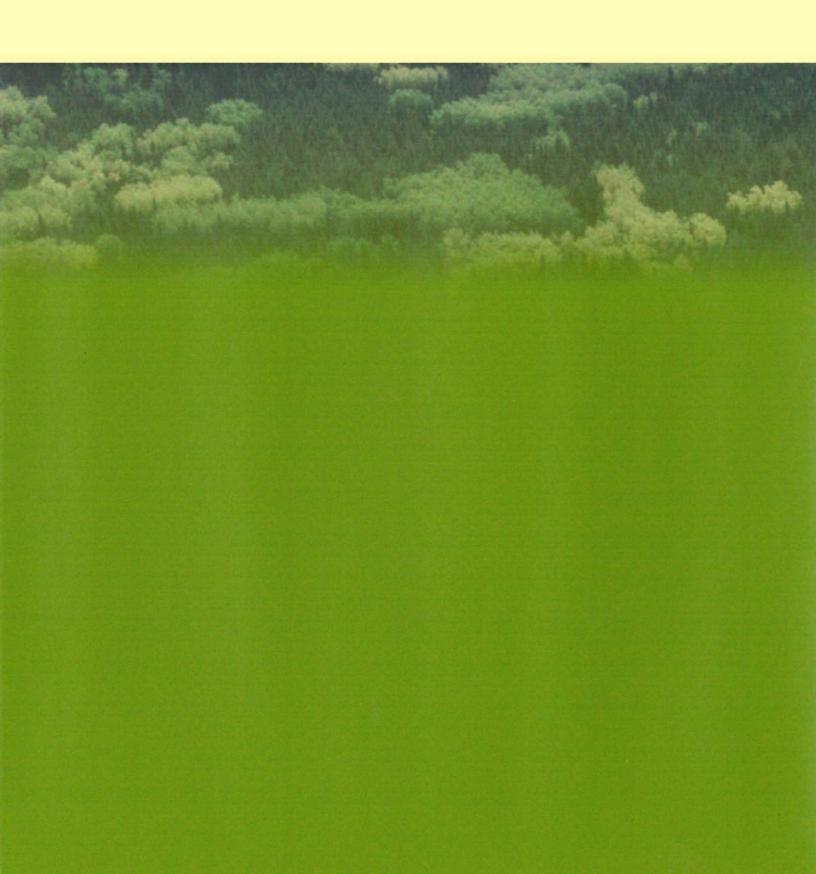












The Forestry Corp. Project Number: P485 For additional information, please contact: The Forestry Corp. 101-11710 Kingsway Avenue Edmonton, AB T5G 0X5 (780) 452-5878

www.forcorp.com

