Water System Sizing Worksheet

Water System Sizing Worksheet

This worksheet can be used to determine the size of pump, pressure tank, and water pipe required for a farm water system. Dugouts, unlike most water wells, have a huge reservoir of water, and can be pumped at much higher flow rates. Therefore, it is important to properly size dugout pumps and pipelines to take full advantage of the dugout.

Enter all information calculated step by step in the recording section below as follows:
Step 1 Water System Fixtures

Step 2	Required Pump Flow Rate	gallons per minute	
Step 3	Conversion to U.S. Gallons	U.S. gallons per minute	
Step 4	Pump Selection		
	Lift	feet	
	Pressure needed	psi	
	Pump horsepower required	hp	other specifications
Step 5	Pressure Tank Size	U.S. gallons	other specifications
Step 6	Length of Supply Pipeline	feet	
Step 7	Pipe Size	inches	other specifications

STEPS TO SIZING YOUR WATER SYSTEM

Step 1 Calculate the peak water use rates in gallons per minute (gpm) for all of the existing and proposed water system fixtures.

Water System Fixtures	No. of Fixtures		Peak Use Rate	Totals
Automatic Cattle Waterers (100 head size)		X	$5 \mathrm{gpm}=$	gpm
Hog Nipple Waterers		X	$1 \mathrm{gpm}=$	_gpm
Poultry Fountain		X	$1 \mathrm{gpm}=$	_gpm
Yard Hydrants		X	5 gpm	_gpm
Household (number of households)		x	5-10 gpm =	_ gpm
Fire Hydrant		X	$10 \mathrm{gpm}=$	_ gpm
Other		x	_ gpm =	gpm
Other		x	\ldots gpm $=$	$\ldots \mathrm{gpm}$

Step 2 To determine the Required Pump Flow Rate you need to consider which water uses, listed in Step 1, will likely occur at the same time and total those together. Note: The minimum design flow rate of the system must exceed the peak use rate of the fixture(s) that use the largest amount of water.

Step 3 Convert the Required Pump Flow Rate from Step 2 into U.S. gallons because practically all pumps available in Canada are rated in U.S. gpm.
Conversion to U.S. Gallons
Required Pump Flow rate
gpm $\mathrm{x} \quad 1.2=$
U.S. gpm

Step 4 To select a pump you need to determine the lift and pressure. It is recommended that you take this information plus the Converted Pump Flow Rate from Step 3, to a reputable pump dealer or a water specialist for correct pump selection. They will recommend the required pump horsepower and other specifications.

Pump Selection				
Lift	Depth of dugout	feet + Farmyard elevation above dugout	feet $=$	lift in feet
Pressure needed				
Pump horsepower required				HP

Step 5 Sizing a pressure tank is based on the Converted Pump Flow Rate and the amount of useable water volume or drawdown. The drawdown is the amount of water that can be withdrawn from the pressure tank between high and low pressure settings. For dugouts, the sealed diaphragm or bladder type tanks are the best choice. In these types of tanks only $1 / 3$ of the volume of the tank is available as drawdown. Therefore, the Pressure Tank Size must be 3 times the drawdown and match the gpm rating (flow rate) of the pump. For example, a 10 gpm pump requires 10 gallons of drawdown or a 30 gallon tank size.
Pressure Tank Size $=3 \mathrm{x}$ Pressure tank drawdown __ U.S. gallons $=\quad$ U.S. gallon capacity or larger

Step 6 Measure the distance from the dugout to the center of the distributing system.

```
Length of Supply Pipeline =
feet
```

Step 7 To determine the Required Pipe Size match the pump flow rate from Step 3, in the left column of the adjacent table with the length of the supply line from Step 6.

Required Pipe Size $=$

\square inches

Note: The minimum pipe size recommended for farmyard water distribution systems is $11 / 4$ inches. This will reduce friction losses in the pipe and allow for future expansion that was unforeseen.

Pipe Diameter (inches)

Flow Rate (U.S. gpm)	Length of Pipe				
	200 ft	400 ft	600 ft	800 ft	000 ft
2	1	1	1	1	1
4	1	1	1	1	1
6	1	1	$11 / 4$	$11 / 4$	$11 / 4$
8	1	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 4$
10	$11 / 4$	$11 / 4$	$11 / 4$	$11 / 2$	$11 / 2$
12	$11 / 4$	$11 / 4$	$11 / 2$	$11 / 2$	$11 / 2$
14	$11 / 4$	$11 / 2$	$11 / 2$	$11 / 2$	2
16	$11 / 2$	$11 / 2$	$11 / 2$	2	2
18	$11 / 2$	$11 / 2$	2	2	2
20	$11 / 2$	$11 / 2$	2	2	
25	11/2	2	2	2	2
30	2	2	2	2	21/2
35	2	2	$2^{1 / 2}$	$21 / 2$	$21 / 2$
40	2	$21 / 2$	$2^{1 / 2}$	21/2	$21 / 2$

[^0]
[^0]: Note: In sizing the above lines, no allowance has been made for elevation differences. For more specific information contact a water specialist in your area.

